Dark matter search with qubits

Hajime Fukuda (U. Tokyo) In collaboration with Chen, Inada, Moroi, Nitta, Sichanugrist arXiv:2212.03884 (PRL 131 (2023) 21, 211001), arXiv:2311.10413 (PRL 133 (2024) 2, 021801), arXiv:2407.19755

Outline

- Introduction
- DM detection with one qubit
 - arXiv:2212.03884, arXiv:2407.19755
 - We propose to use superconducting qubits as dark matter detectors
 - We may detect DM $m_{DM} \sim \omega_{qubit} \sim {\rm GHz} \sim 10^{-5} \, {\rm eV}$
- DM detection with quantum circuits
 - arXiv:2311.10413
 - We construct a quantum circuit to enhance the DM signal. With N qubits, the signal is proportional to N^2
 - I'll also talk about the noise in the circuit (ongoing work)
- Results

Introduction

Dark matter of the universe

- There are many observational evidence for the dark matter, but still its properties are unknown.
- We focus on light dark matter candidates, in particular, the dark photon dark matter and the axion, and propose a new search method **using superconducting qubits as a dark matter detector**

Quantum computation and qubits

- The fundamental piece of the quantum computation is qubit, a two-level quantum system, |0
 angle and |1
 angle
- By the recent development of the quantum technology, many-qubit systems gradually become available
 - Currently, the system is noisy, but hopefully future development will make more cleaner quantum systems available.

Types of qubits

- Currently, there are several types of qubits available
 - Single photon
 - NMR
 - Ion trap
 - Superconducting qubit (transmon qubit) Koch et al, 07
 - •••
- What is the superconducting qubit?

An example: Harmonic oscillator

- What is the *easiest* quantum system? It's a harmonic oscillator.
- Suppose to use a harmonic oscillator as a qubit: $|0\rangle = |0\rangle, |1\rangle = a^{\dagger}|0\rangle$
- The simple example of a harmonic oscillator \rightarrow LC circuit

$$H = \frac{1}{2}CV^{2} + \frac{1}{2}LI^{2} = \frac{1}{2}CL^{2}\dot{I}^{2} + \frac{1}{2}LI^{2}$$

We may indeed quantize the system, obtaining a quantum harmonic oscillator

Harmonic oscillators cannot be qubits

- It is NOT a two-level system!
 - Any $|n\rangle \equiv \frac{1}{\sqrt{n!}} (a^{\dagger})^{n} |0\rangle$ is the eigenstate of the Hamiltonian
 - We cannot isolate $|g\rangle$ and $|e\rangle$

All energy differences are the same and we cannot excite only $|1\rangle$ from $|0\rangle$; then $|2\rangle$ would be excited from $|1\rangle$

Non-linearity: Josephson junction

Josephson junction: two superconductor separated by a thin insulator
 By tuppoling, the Schrödinger equip

By tunneling, the Schrödinger eq is $i\partial_t \psi_1 = T\psi_2 - eV\psi_1$ $i\partial_t \psi_2 = T\psi_1 + eV\psi_2$ The solution is $I = \dot{n}_2 = -\dot{n}_1 = I_c \sin \phi$ $V = -\frac{1}{2e}\dot{\phi}$ with $\phi = \theta_2 - \theta_1$ The energy is $E = \int dt \, I \, V = \int_{\phi} d\phi \, I \propto -I_c \cos \phi$ Non-linear!

Superconducting qubit

- We introduce a "non-linearity"
 - Replacing L with a Josephson junction

$$H = \frac{1}{2}CV^2 - J_0 \cos \theta$$
$$= \frac{1}{8e^2}C\dot{\theta}^2 + J_0 \left[\frac{1}{2}\theta^2 - \mathcal{O}(\theta^4)\right] + \text{const.}$$

All energy differences are different; we can use $|1\rangle$ and $|0\rangle$ as a two-level system (For the transmon limit, $J_0 \gg \frac{e^2}{c}$, $\langle \theta^2 \rangle \ll 1$ and we may regard the system as a HO) Typically, $\omega \sim \text{GHz}$.

Frequency tuning

- \bullet We may tune the energy gap by $\sim \! {\rm one}$ order by using SQUID
 - The tunability is one of the big advantage as the DM detector

The current of Josephson junction: $I = I_c \sin \phi$ The current of SQUID (two same JJ): $I = I_c \sin \phi_1 + I_c \sin \phi_2$ Quantization condition of superconductor: $2\pi n = \phi_2 - \phi_1 + 2e B \cdot S$ $\Rightarrow I = (2I_c \cos \phi_e) \sin \left(\phi_1 + \frac{\phi_e}{2}\right)$

Garally: real qubits

Credit: S. Chen, T. Inada and T. Nitta

Dark matter detection with one qubit

Dark photon dark matter

• First DM target: dark photon dark matter with a kinetic mixing with the SM photon

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X^2 - \frac{\epsilon}{2} X_{\mu\nu} F^{\mu\nu}$$

- After solving the kinetic mixing, X_{μ} couples with the SM current

$$\Delta \mathcal{L} = e \big(A_{\mu} + \epsilon X_{\mu} \big) J_{\rm SM}^{\mu}$$

• The DM background looks like "X electric field"

$$\langle \vec{X} \rangle \simeq \bar{X}\vec{n}(t) \cos m_X t$$
, $\rho_{DM} \simeq \frac{1}{2}m_X^2 \bar{X}^2$, $E_X \sim \dot{X}$

Axion dark matter

• Another target: axion (-like particle) dark matter

$$\mathcal{L} = \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 + g_{a\gamma\gamma} aE \cdot B$$

• With B_0 imposed as a bg, a sources an effective electric field

$$E = g_{a\gamma\gamma} \, aB_0$$

- Strong mag. field on SC?
 - It is reported that the magnetic field nearly 1T can be imposed if it is completely parallel (Krause *et al*, 2022)
 - We take $B_0 = 5$ T later.
 - We of course agree that it's challenging

Interaction b/w qubits and electric fields

• How does an electric field excite the transmon?

а

V: canonical variable
$$(\sigma_X)$$

$$\Delta H = C dV \cdot E$$
E: induced from DM

$$\simeq C dV \cdot \epsilon m_X \overline{X} (\vec{n}_X \cdot \vec{e}) \sin(m_{DM} t - \alpha)$$

$$\equiv 2\eta \sigma_X \sin(m_{DM} t - \alpha)$$
for DP. The last line is the same for the axion.
 (n_X, α) : random (direction, phase)

Hamiltonian of qubits

• The Hamiltonian of the qubit is now

In reality, the DM phase is unknown; $\Delta H \sim 2\eta \sigma_X \sin(m_X t + \alpha)$ Then, $H_I = \eta(\sigma_X \cos \alpha + \sigma_Y \sin \alpha)$

$$H = H_0 + \Delta H$$
, $H_0 = -\frac{1}{2}\omega\sigma_z$, $\Delta H = 2\eta\sigma_X\sin m_{DM}t$

• To solve this, we move to the interaction picture;

ĺ

$$\frac{\partial}{\partial t} \frac{\psi_I = H_I \psi_I}{H_I = e^{iH_0 t} \Delta H e^{-iH_0 t}}$$

- To simplify things, we adopt the rotating-wave approx. $H_I = \eta \sigma_X \cos(m_{DM} - \omega)t + \text{(higher freq. modes)} \simeq \eta \sigma_X$
 - The timescale we consider is assumed to be much longer than ω^{-1}
 - We may detect DM $m_{DM} \sim \omega$

Evolution of qubits

• Everything is now simple:

$$\psi_{I}(t) = \exp(-iH_{I}t)\psi_{I}(0)$$

=
$$\begin{pmatrix} \cos\eta t & -i\sin\eta t \\ -i\sin\eta t & \cos\eta t \end{pmatrix} \begin{pmatrix} \psi_{0} \\ \psi_{1} \end{pmatrix}$$

- Evolution of qubits are clear; qubits oscillate $|0\rangle$ and $|1\rangle$.
- If we initially prepare $|0\rangle$, we may observe $|1\rangle$ if DM exists $|\psi(t)\rangle \simeq |0\rangle i \eta t |1\rangle \Rightarrow p(0 \rightarrow 1) = |\langle 1|\psi(t)\rangle|^2 \simeq \eta^2 t^2$

as long as t is smaller than the "coherent time" of the system

 $\tau = \min(\tau_{DM}, \tau_{qubit})$

Time for DM blob to pass. $\sim 1/mv^2$

Time for the qubit to maintain the coherence (something like Q-value/frequency) $\sim 100 \ \mu$ s by current technology

Frequency range to see is $\sim 2\pi/\tau$

Measurement procedure

- Measurement procedure is following:
 - 1. Prepare all n_q qubits in the ground state $|0\rangle$
 - 2. Expose all qubits to the DM for the time $\min(\tau_{DM}, \tau_{qubit})$
 - 3. Measure all qubits to see if there are any $|1\rangle$
 - 4. Repeat 1-3 for some fixed time
 - 5. Change the frequency of the qubits by $\sim 2\pi/\tau$ by changing the magnetic flux of the SQUID
 - 6. Repeat 1-5 to scan some range
- The advantage of this system, compared with, say, cavity experiments, is the ease of the freq tuning

Cavity effect to enhance the signal

• We can additionally use the cavity effect to enhance the signal:

If the induced electric field is near the resonance frequency of the cavity, it is "stored" inside the cavity and the effective electric field is enhanced: $E \rightarrow \kappa E, \kappa > 1$

DM detection with quantum circuits

Quantum Enhancement

- The probability for one qubit is $p \sim \eta^2 \tau^2$. The quantum nature of *single* qubit is essential for this τ^2 dependence.
- How about n_q ? In the previous procedure, we assume to use n_q qubits *independently*.
- For such "independent" qubits, as we increase the number of qubits, n_q , the probability to see $|1\rangle$ in any of the qubits increases by n_q
- Is it possible to increase the probability by using quantum nature of the system for n_q ?

Summing up amplitudes

$$\begin{aligned} |0\rangle \rightarrow |0\rangle + \eta\tau |1\rangle & p = \eta^{2}\tau^{2} \\ |0\rangle \rightarrow |0\rangle + \eta\tau |1\rangle & p = \eta^{2}\tau^{2} \\ \vdots \\ |0\rangle \rightarrow |0\rangle + \eta\tau |1\rangle & p = \eta^{2}\tau^{2} \\ p_{tot} = 1 - (1 - p)^{nq} \end{aligned}$$

- Is it possible to let n_q appear in the state amplitude?
- Namely, we need to find such $|\psi
 angle$ that

$$|\psi\rangle \rightarrow |\psi\rangle + \mathcal{O}(n_q)|\psi_{\perp}\rangle$$

• Then,
$$p' = \langle \psi_{\perp} | \psi(t) \rangle = \mathcal{O}(n_q^2)$$
.

 $\sim n_q p$

Summing up phases

- Let's focus on each qubit individually: $\begin{array}{l} H_I = \eta \sigma_X \Rightarrow H_I \mid \pm \rangle = \pm \eta \mid \pm \rangle \\ \Rightarrow \sum H_I \mid \pm \rangle^{\otimes n_q} = \pm n_q \eta \mid \pm \rangle^{\otimes n_q} \end{array}$
- Thus, the relative phase of $|\pm\rangle^{\otimes n_q}$ is $\mathcal{O}\bigl(n_q\bigr)$
- To measure the relative phase, a superposed state is needed $e^{i(\Sigma H_I)t}(|+\rangle^{\otimes n_q} + |-\rangle^{\otimes n_q}) = e^{in_q\eta t}|+\rangle^{\otimes n_q} + e^{-in_q\eta t}|-\rangle^{\otimes n_q}$ $\simeq (|+\rangle^{\otimes n_q} + |-\rangle^{\otimes n_q})$ $+in_q\eta t(|+\rangle^{\otimes n_q} - |-\rangle^{\otimes n_q}) \qquad p = n_q^2\eta^2 t^2 !$
- $|+\rangle^{\otimes n_q} \pm |-\rangle^{\otimes n_q}$ is called the GHZ state

Greenberger, Horne, Zeilinger, 1989, Giovannetti *et al*, 2004

Quantum Circuit

• We need to prepare $|+\rangle^{\otimes n_q} + |-\rangle^{\otimes n_q}$ (GHZ state) and measure it by $|+\rangle^{\otimes n_q} - |-\rangle^{\otimes n_q}$. This can be done by

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv:2311.10413

Take a closed look at the circuit

• To check it, notice the equivalence on CNOT:

H

inp	out	output
Х	У	x y+x
0>	0>	0> 0>
0>	$ 1\rangle$	0> 1>
$ 1\rangle$	0>	$ 1\rangle$ $ 1\rangle$
$ 1\rangle$	$ 1\rangle$	1> 0>

From Wikipedia

Here,

$$H|0\rangle = |+\rangle \sim |0\rangle + |1\rangle$$

 $H|1\rangle = |-\rangle \sim |0\rangle - |1\rangle$
and $H^2 = 1$

H

H

Let's check it: $\begin{array}{c} |0\rangle|0\rangle \rightarrow |+\rangle|+\rangle \rightarrow |+\rangle|+\rangle \rightarrow |0\rangle|0\rangle \\ |0\rangle|1\rangle \rightarrow |+\rangle|-\rangle \rightarrow |+\rangle|-\rangle \rightarrow |0\rangle|1\rangle \\ |1\rangle|0\rangle \rightarrow |-\rangle|+\rangle \rightarrow |-\rangle|-\rangle \rightarrow |1\rangle|1\rangle \\ |1\rangle|1\rangle \rightarrow |-\rangle|-\rangle \rightarrow |-\rangle|+\rangle \rightarrow |1\rangle|0\rangle \\ \end{array}$ Here,

 $\text{CNOT}|\psi\rangle|\pm\rangle = |\psi\rangle|0\rangle \pm (X|\psi\rangle)|1\rangle$

 $|+\rangle^{\otimes n_q} - |-\rangle^{\otimes n_q}$ instead

Take a closed look at the circuit

- The orange part is the inverse of the blue part (but for the last Hadamard gates)
- $|+\rangle^{\otimes n_q} \pm |-\rangle^{\otimes n_q}$ are converted back to $|0\rangle$ and $|1\rangle$, respectively.

Quantum noises

- Up to this point, we haven't thought of the quantum noises.
- What is *quantum* noises?
- Quantum noises is, the effect of environments and effectively let the state jump into another state with *classical* probability

$$|\psi\rangle \rightarrow \begin{cases} |\psi\rangle & \text{with probability } p \\ E|\psi\rangle & \text{with probability } 1-p \end{cases}$$

- The final state is a classical mixture of the state and not a pure state anymore. It can be written in the density matrix.
- E need not to be unitary, although I ignore the normalization here; e.g.
 E = a, the de-excitation noise

See e.g. Nielsen & Chuang

Effect of quantum noises

 Entangled states such as the GHZ states are, very generally speaking, more fragile to the quantum noise than separated system

Separated system $|\psi_1\rangle, |\psi_2\rangle, \cdots |\psi_{n_q}\rangle$ $n_q \times \eta^2 t^2$ signals, $n_q \times (1 - e^{-\gamma t})$ errors

Entangled system $|\psi_1\rangle|\psi_2\rangle \cdots |\psi_{n_q}\rangle + \cdots$ $\sim n_q^2 \eta^2 t^2$ signals, $(1 - e^{-n_q \gamma t})$ errors Errors on any qubits are counted as the error of the system...

 $\tau_{\text{entangled}} \sim \tau_{\text{separated}} / n_q$ and NO signal enhancement anymore?

Quantum error correction

- Actually, the GHZ state is strong against some error.
 - Suppose a special error, $|\pm\rangle \to |\mp\rangle$ on the first qubit only. The state is then

$$a(|+\rangle^{\otimes N} + |-\rangle^{\otimes N}) + b(|+\rangle^{\otimes N} - |-\rangle^{\otimes N})$$

- $\rightarrow a \left(|-\rangle|+\rangle^{\otimes N-1}+|+\rangle|-\rangle^{\otimes N-1} \right) + b \left(|-\rangle|+\rangle^{\otimes N-1}-|+\rangle|-\rangle^{\otimes N-1} \right)$
- We can measure X_0X_1 and $X_{n_q}X_1$, which are always +1 for the states before the error. We can locate the error and correct it.
- However, such procedure cannot be performed for general error.

Kessler et al, 2014, Dür et al, 2014, Jeske et al, 2014

Effect of the quantum noise on our circuit

- There are possible ways to evade the nightmare;
- 1. The coherent time of the system is $\tau = \min(\tau_{DM}, \tau_{qubit})$. Thus, if $\tau_{qubit} \gg n_q \tau_{DM}$, the system is constrained by the DM coherent time.
- 2. Assume that the state prep error is negligible. Then, if we take $\tau_{GHZ} = \tau/n_q$, the probability is $\mathcal{O}(n_q^0)$, the time to perform one measurement is $\mathcal{O}(n_q^{-1})$, the frequency range we may scan by one measurement is $\mathcal{O}(n_q^1)$. In total, the signal is still $\mathcal{O}(n_q^2)$

HF, Matsuzaki, Moroi, Sichanugrist et al., in prep

Results

Result for 1-year measurement (DP)

- We plot 5σ discovery reach
- We assume
 - Coherent time $2\pi Q/\omega$, $Q \sim 10^6$
 - Scanning with $\Delta \omega = 2\pi/\tau$
 - 0.1% readout error
 - "thermal noise" for 1 or 30 mK
- blue: 1 qubit
- lightblue: separated 100 qubits
- With the GHZ state, the sensitivity for ϵ is improved by $\sqrt{n_q}$

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv:2212.03884

Result for 1-year measurement (axion)

- We plot 5σ discovery reach
- B = 5 T and the same parameters as the previous one but for the "thermal noise"
 - We suspect it is already included in τ
- (light)green: 1 (sep. 100) qubit
- (light)blue: Use of the cavity effect, $\kappa = 100$
- orange: $\kappa = 100 + \text{entangled } 100$ qubits

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv: 2407.19755

Summary

Summary

- We proposed to use transmon qubits as a dark matter detector
- It could constrain unexplored regions of the dark photon and axion dark matter parameter regions
- For the axion DM, it may reach the QCD axion bound
- The use of entangled initial states may improve the sensitivity
 - The evaluation of quantum noises are non-trivial, but we can show even with large noises the entangled states may have an advantage

Backup

Fully mixed mode and κ

Probability dependence

$$p_{ge}(\tau) \simeq 0.12 \times \kappa^2 \cos^2 \Theta \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{f}{1 \text{ GHz}}\right)$$
$$\times \left(\frac{\tau}{100 \ \mu \text{s}}\right)^2 \left(\frac{C}{0.1 \text{ pF}}\right) \left(\frac{d}{100 \ \mu \text{m}}\right)^2$$
$$\times \left(\frac{\rho_{\text{DM}}}{0.45 \text{ GeV/cm}^3}\right),$$

$$p_{g \to e}^{(1)} \simeq 0.11 \times \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \left(\frac{m_a}{1 \ \mu\text{eV}}\right)^{-1} \left(\frac{B_0}{1 \ \text{T}}\right)^2 \left(\frac{\tau}{100 \ \mu\text{s}}\right)^2 \kappa^2 \\ \times \left(\frac{C}{0.1 \ \text{pF}}\right) \left(\frac{d}{100 \ \mu\text{m}}\right)^2 \left(\frac{\rho_{\text{DM}}}{0.45 \ \text{GeV/cm}^3}\right).$$

Syndrome measurement

FIG. 2: Quantum circuit for the syndrome $X_i X_{i+1}$ measurement.