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• Introduction

• DM detection with one qubit
• arXiv:2212.03884, arXiv:2407.19755

• We propose to use superconducting qubits as dark matter detectors

• We may detect DM 𝑚𝐷𝑀 ∼ 𝜔𝑞𝑢𝑏𝑖𝑡 ∼ GHz ∼ 10−5 eV

• DM detection with quantum circuits
• arXiv:2311.10413

• We construct a quantum circuit to enhance the DM signal. With 𝑁
qubits, the signal is proportional to 𝑁2

• I’ll also talk about the noise in the circuit (ongoing work)

• Results



Introduction



Dark matter of the universe

• There are many observational evidence for the dark matter, 
but still its properties are unknown.

• We focus on light dark matter candidates, in particular, the 
dark photon dark matter and the axion, and propose a new 
search method using superconducting qubits as a dark 
matter detector



Quantum computation and qubits

• The fundamental piece of the quantum computation is qubit, 
a two-level quantum system, |0⟩ and |1⟩

• By the recent development of the quantum technology, 
many-qubit systems gradually become available
• Currently, the system is noisy, but hopefully future development will 

make more cleaner quantum systems available.



Types of qubits

• Currently, there are several types of qubits available
• Single photon

• NMR

• Ion trap

• Superconducting qubit (transmon qubit)

• …

• What is the superconducting qubit?

Koch et al, 07



An example: Harmonic oscillator

• What is the easiest quantum system? It’s a harmonic 
oscillator.

• Suppose to use a harmonic oscillator as a qubit:
0 = 0 , 1 = 𝑎†|0⟩

• The simple example of a harmonic oscillator → LC circuit

𝐻 =
1

2
𝐶𝑉2 +

1

2
𝐿𝐼2 =

1

2
𝐶𝐿2 ሶ𝐼2 +

1

2
𝐿𝐼2

We may indeed quantize the system, obtaining
a quantum harmonic oscillator



Harmonic oscillators cannot be qubits

• It is NOT a two-level system!

• Any 𝑛 ≡
1

𝑛!
𝑎†

𝑛
|0⟩ is the eigenstate of the Hamiltonian

• We cannot isolate |𝑔⟩ and 𝑒

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

All energy differences are the same and
we cannot excite only |1⟩ from |0⟩;
then |2⟩ would be excited from |1⟩



Non-linearity: Josephson junction

• Josephson junction: two superconductor separated by a thin 
insulator 

𝜓1 = 𝑛1 exp 𝑖𝜃1 𝜓2 = 𝑛2 exp 𝑖𝜃2

By tunneling, the Schrödinger eq is
𝑖𝜕𝑡𝜓1 = 𝑇𝜓2 − 𝑒𝑉𝜓1

𝑖𝜕𝑡𝜓2 = 𝑇𝜓1 + 𝑒𝑉𝜓2

The solution is
𝐼 = ሶ𝑛2 = − ሶ𝑛1 = 𝐼𝑐 sin𝜙

𝑉 = −
1

2𝑒
ሶ𝜙

with 𝜙 = 𝜃2 − 𝜃1
The energy is

𝐸 = ∫ 𝑑𝑡 𝐼 𝑉 = න
𝜙

𝑑𝜙 𝐼 ∝ −𝐼𝑐 cos𝜙

Voltage 𝑉
Current 𝐼

Non-linear!



Superconducting qubit

• We introduce a “non-linearity”
• Replacing 𝐿 with a Josephson junction

𝐻 =
1

2
𝐶𝑉2 − 𝐽0 cos 𝜃

=
1

8𝑒2
𝐶 ሶ𝜃2 + 𝐽0

1

2
𝜃2 − 𝒪 𝜃4 + const.

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3
All energy differences are different;
we can use |1⟩ and 0 as a two-level system

(For the transmon limit, 𝐽0 ≫
𝑒2

𝐶
, 𝜃2 ≪ 1 and 

we may regard the system as a HO)
Typically, 𝜔 ∼ GHz.



Frequency tuning

• We may tune the energy gap by ~one order by using SQUID
• The tunability is one of the big advantage as the DM detector

The current of Josephson junction:
𝐼 = 𝐼𝑐 sin𝜙

The current of SQUID (two same JJ):
𝐼 = 𝐼𝑐 sin𝜙1 + 𝐼𝑐 sin𝜙2

Quantization condition of superconductor:
2𝜋𝑛 = 𝜙2 − 𝜙1 + 2𝑒 𝐵 ⋅ 𝑆

⇒ 𝐼 = 2𝐼𝑐 cos𝜙𝑒 sin 𝜙1 +
𝜙𝑒
2



Garally: real qubits 

Credit: S. Chen, T. Inada and T. Nitta



Dark matter detection with one 
qubit



Dark photon dark matter

• First DM target: dark photon dark matter with a kinetic 
mixing with the SM photon

ℒ = −
1

4
𝑋𝜇𝜈𝑋

𝜇𝜈 +
1

2
𝑚𝑋

2𝑋2 −
𝜖

2
𝑋𝜇𝜈𝐹

𝜇𝜈

• After solving the kinetic mixing, 𝑋𝜇 couples with the SM 
current

Δℒ = 𝑒 𝐴𝜇 + 𝜖𝑋𝜇 𝐽SM
𝜇

• The DM background looks like “𝑋 electric field”

Ԧ𝑋 ≃ ത𝑋𝑛 𝑡 cos𝑚𝑋𝑡 , 𝜌𝐷𝑀 ≃
1

2
𝑚𝑋

2 ത𝑋2, 𝐸𝑋 ∼ ሶ𝑋



Axion dark matter

• Another target: axion (-like particle) dark matter

ℒ =
1

2
𝜕𝑎 2 −

1

2
𝑚𝑎

2𝑎2 + 𝑔𝑎𝛾𝛾𝑎𝐸 ⋅ 𝐵

• With 𝐵0 imposed as a bg, 𝑎 sources an effective electric field
𝐸 = 𝑔𝑎𝛾𝛾 𝑎𝐵0

• Strong mag. field on SC?
• It is reported that the magnetic field nearly

1T can be imposed if it is completely parallel
(Krause et al, 2022) 

• We take 𝐵0 = 5 T later.
• We of course agree that it’s challenging



Interaction b/w qubits and electric fields

• How does an electric field excite the transmon?

Δ𝐻 = 𝐶𝑑𝑉 ⋅ 𝐸
≃ 𝐶𝑑𝑉 ⋅ 𝜖𝑚𝑋

ത𝑋 𝑛𝑋 ⋅ Ԧ𝑒 sin 𝑚𝐷𝑀𝑡 − 𝛼
≡ 2𝜂𝜎𝑋 sin(𝑚𝐷𝑀𝑡 − 𝛼)

for DP. The last line is the same for the 
axion.
(𝑛𝑋, 𝛼): random (direction, phase)

𝐸

V: canonical variable (𝜎𝑋)

E: induced from DM



Hamiltonian of qubits

• The Hamiltonian of the qubit is now

𝐻 = 𝐻0 + Δ𝐻, 𝐻0 = −
1

2
𝜔𝜎𝑧, Δ𝐻 = 2𝜂𝜎𝑋 sin𝑚𝐷𝑀𝑡

• To solve this, we move to the interaction picture;

𝑖
𝜕

𝜕𝑡
𝜓𝐼 = 𝐻𝐼𝜓𝐼

𝐻𝐼 = 𝑒𝑖𝐻0𝑡Δ𝐻𝑒−𝑖𝐻0𝑡

• To simplify things, we adopt the rotating-wave approx.
𝐻𝐼 = 𝜂𝜎𝑋 cos 𝑚𝐷𝑀 − 𝜔 𝑡 + higher freq.modes ≃ 𝜂𝜎𝑋

• The timescale we consider is assumed to be much longer than 𝜔−1

• We may detect DM 𝑚𝐷𝑀 ∼ 𝜔

In reality, the DM phase is 
unknown;

Δ𝐻 ∼ 2𝜂𝜎𝑋 sin 𝑚𝑋𝑡 + 𝛼
Then,

𝐻𝐼 = 𝜂 𝜎𝑋 cos 𝛼 + 𝜎𝑌 sin 𝛼



Evolution of qubits

• Everything is now simple:
𝜓𝐼 𝑡 = exp −𝑖𝐻𝐼𝑡 𝜓𝐼 0

=
cos 𝜂𝑡 −𝑖 sin 𝜂𝑡
−𝑖 sin 𝜂𝑡 cos 𝜂𝑡

𝜓0

𝜓1

• Evolution of qubits are clear; qubits oscillate 0 and 1 .

• If we initially prepare 0 , we may observe 1 if DM exists
𝜓 𝑡 ≃ 0 − 𝑖 𝜂𝑡 1 ⇒ 𝑝 0 → 1 = 1 𝜓 𝑡 2 ≃ 𝜂2𝑡2

as long as 𝑡 is smaller than the “coherent time” of the system 
𝜏 = min 𝜏𝐷𝑀 , 𝜏𝑞𝑢𝑏𝑖𝑡

Time for DM blob to 
pass. ~1/𝑚𝑣2

Time for the qubit to maintain the 
coherence
(something like Q-value/frequency)
~100 𝜇s by current technology

Frequency range 
to see is ∼ 2𝜋/𝜏



Measurement procedure

• Measurement procedure is following:
1. Prepare all 𝑛𝑞 qubits in the ground state 0

2. Expose all qubits to the DM for the time min 𝜏𝐷𝑀, 𝜏𝑞𝑢𝑏𝑖𝑡
3. Measure all qubits to see if there are any |1⟩

4. Repeat 1-3 for some fixed time

5. Change the frequency of the qubits by ~2𝜋/𝜏 by changing the 
magnetic flux of the SQUID

6. Repeat 1-5 to scan some range

• The advantage of this system, compared with, say, cavity 
experiments, is the ease of the freq tuning



Cavity effect to enhance the signal

• We can additionally use the cavity effect to enhance the 
signal:

Cavity wall

E from DM Induced E 
from wall

Total E inside the 
wall must be zero

Inside the cavity

If the induced electric field is near the 
resonance frequency of the cavity, it is 
“stored” inside the cavity and the effective 
electric field is enhanced: 𝐸 → 𝜅𝐸, 𝜅 > 1



DM detection with quantum 
circuits



Quantum Enhancement

• The probability for one qubit is 𝑝 ∼ 𝜂2𝜏2. The quantum nature 
of single qubit is essential for this 𝜏2 dependence.

• How about 𝑛𝑞? In the previous procedure, we assume to use 
𝑛𝑞 qubits independently.

• For such “independent” qubits, as we increase the number of 
qubits, 𝑛𝑞, the probability to see |1⟩ in any of the qubits 
increases by 𝑛𝑞

• Is it possible to increase the probability by using quantum 
nature of the system for 𝑛𝑞?



Summing up amplitudes

0 → 0 + 𝜂𝜏 1

…

𝑝 = 𝜂2𝜏2

0 → 0 + 𝜂𝜏 1 𝑝 = 𝜂2𝜏2

0 → 0 + 𝜂𝜏 1 𝑝 = 𝜂2𝜏2

𝑝𝑡𝑜𝑡 = 1 − 1 − 𝑝 𝑛𝑞 ∼ 𝑛𝑞𝑝

• Is it possible to let 𝑛𝑞 appear in 
the state amplitude? 

• Namely, we need to find such 
|𝜓⟩ that

𝜓 → 𝜓 + 𝒪 𝑛𝑞 |𝜓⊥⟩

• Then, 𝑝′ = 𝜓⊥ 𝜓 𝑡 = 𝒪 𝑛𝑞
2 .



Summing up phases

• Let’s focus on each qubit individually:
𝐻𝐼 = 𝜂𝜎𝑋 ⇒ 𝐻𝐼 ± = ±𝜂 ±

⇒ ∑𝐻𝐼 ±
⊗𝑛𝑞 = ±𝑛𝑞𝜂 ±

⊗𝑛𝑞

• Thus, the relative phase of ± ⊗𝑛𝑞 is 𝒪 𝑛𝑞

• To measure the relative phase, a superposed state is needed
𝑒𝑖 ∑𝐻𝐼 𝑡 + ⊗𝑛𝑞 + − ⊗𝑛𝑞 = 𝑒𝑖𝑛𝑞𝜂𝑡 + ⊗𝑛𝑞 + 𝑒−𝑖𝑛𝑞𝜂𝑡 − ⊗𝑛𝑞

≃ + ⊗𝑛𝑞 + − ⊗𝑛𝑞

+𝑖𝑛𝑞𝜂𝑡 + ⊗𝑛𝑞 − − ⊗𝑛𝑞

• + ⊗𝑛𝑞 ± − ⊗𝑛𝑞 is called the GHZ state
Greenberger, Horne, Zeilinger, 1989,
Giovannetti et al, 2004

𝑝 = 𝑛𝑞
2𝜂2𝑡2 !



Quantum Circuit

• We need to prepare + ⊗𝑛𝑞 + − ⊗𝑛𝑞 (GHZ state) and 
measure it by + ⊗𝑛𝑞 − − ⊗𝑛𝑞. This can be done by

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv:2311.10413



Take a closed look at the circuit

• To check it, notice the equivalence on CNOT:

From Wikipedia

=

Here, 

𝐻 0 = + ∼ 0 + 1
𝐻 1 = − ∼ 0 − 1

and 𝐻2 = 1

Let’s check it:
0 0 → + + → + + → 0 0
0 1 → + − → + − → 0 1
1 0 → − + → − − → 1 1
1 1 → − − → − + → 1 0

Here,
CNOT 𝜓 ± = 𝜓 0 ± 𝑋 𝜓 )|1⟩



Take a closed look at the circuit

=

0 0 + 1 |0⟩

0 0 + 1 |1⟩

0 0 |0⟩ + 1 |1⟩|1⟩

• If we put |1⟩ only for the first qubit, we get 
+ ⊗𝑛𝑞 − − ⊗𝑛𝑞 instead

0 → + , 1 → |−⟩

+ ⊗𝑛𝑞 + − ⊗𝑛𝑞



Take a closed look at the circuit

• The orange part is the inverse of the blue part 
(but for the last Hadamard gates)

• + ⊗𝑛𝑞 ± − ⊗𝑛𝑞 are converted back to 0 and 
1 , respectively.



Quantum noises

• Up to this point, we haven’t thought of the quantum noises.

• What is quantum noises?

• Quantum noises is, the effect of environments and effectively 
let the state jump into another state with classical probability

𝜓 → ቊ
𝜓 with probability 𝑝

𝐸 𝜓 with probability 1 − 𝑝

• The final state is a classical mixture 
of the state and not a pure state 
anymore. It can be written in the 
density matrix.

• 𝐸 need not to be unitary, although I 
ignore the normalization here; e.g. 
𝐸 = 𝑎, the de-excitation noise

See e.g. Nielsen & Chuang 



Effect of quantum noises

• Entangled states such as the GHZ states are, very generally 
speaking, more fragile to the quantum noise than separated 
system Huelga et al., 1997

𝜓1 𝜓2 ⋯|𝜓𝑛𝑞⟩ + ⋯𝜓1 , 𝜓2 , ⋯ |𝜓𝑛𝑞⟩

Separated system

𝑛𝑞 × 𝜂2𝑡2 signals,

𝑛𝑞 × (1 − 𝑒−𝛾𝑡) errors

∼ 𝑛𝑞
2𝜂2𝑡2 signals,

(1 − 𝑒−𝑛𝑞𝛾𝑡) errors

Entangled system

𝜏entangled ∼ 𝜏separated/𝑛𝑞 and NO signal enhancement anymore?

Errors on any qubits are counted as 
the error of the system…



Quantum error correction

• Actually, the GHZ state is strong against some error. 
• Suppose a special error, ± → ∓ on the first qubit only. The state 

is then

𝑎 + ⊗𝑁 + − ⊗𝑁 + 𝑏 + ⊗𝑁 − − ⊗𝑁

→ 𝑎 |−⟩ + ⊗𝑁−1 + + − ⊗𝑁−1 + 𝑏 |−⟩ + ⊗𝑁−1 − + − ⊗𝑁−1

• We can measure 𝑋0𝑋1 and 𝑋𝑛𝑞𝑋1, which are always +1 for the states 
before the error. We can locate the error and correct it.

• However, such procedure cannot be performed for general 
error.

Kessler et al, 2014, Dür et al, 2014, Jeske et al, 2014



Effect of the quantum noise on our circuit

• There are possible ways to evade the nightmare;

1. The coherent time of the system is 𝜏 = min 𝜏𝐷𝑀 , 𝜏𝑞𝑢𝑏𝑖𝑡 . 
Thus, if 𝜏𝑞𝑢𝑏𝑖𝑡 ≫ 𝑛𝑞𝜏𝐷𝑀, the system is constrained by the 
DM coherent time.

2. Assume that the state prep error is negligible. Then, if we 
take 𝜏𝐺𝐻𝑍 = 𝜏/𝑛𝑞, the probability is 𝒪 𝑛𝑞

0 , the time to 
perform one measurement is 𝒪 𝑛𝑞

−1 , the frequency range 
we may scan by one measurement is 𝒪 𝑛𝑞

1 . In total, the 
signal is still 𝒪 𝑛𝑞

2

HF, Matsuzaki, Moroi, Sichanugrist et al., in prep



Results



Result for 1-year measurement (DP)

• We plot 5𝜎 discovery reach

• We assume 
• Coherent time 2𝜋𝑄/𝜔, 𝑄 ∼ 106

• Scanning with Δ𝜔 = 2𝜋/𝜏

• 0.1% readout error

• “thermal noise” for 1 or 30 mK

• blue: 1 qubit

• lightblue: separated 100 qubits

• With the GHZ state, the sensitivity 
for 𝜖 is improved by 𝑛𝑞

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv:2212.03884



Result for 1-year measurement (axion)

• We plot 5𝜎 discovery reach

• 𝐵 = 5 T and the same parameters 
as the previous one but for the 
“thermal noise”
• We suspect it is already included in 𝜏

• (light)green: 1 (sep. 100) qubit

• (light)blue: Use of the cavity 
effect, 𝜅 = 100

• orange: 𝜅 = 100 + entangled 100 
qubits

HF Chen, Inada, Moroi, Nitta, Sichanugrist arXiv: 2407.19755



Summary



Summary

• We proposed to use transmon qubits as a dark matter 
detector

• It could constrain unexplored regions of the dark photon and 
axion dark matter parameter regions

• For the axion DM, it may reach the QCD axion bound

• The use of entangled initial states may improve the 
sensitivity
• The evaluation of quantum noises are non-trivial, but we can show

even with large noises the entangled states may have an advantage



Backup



Fully mixed mode and 𝜅

𝜅 ∼
𝑚

𝑚 −𝜔𝑐
≲
𝑚

𝜆
𝜔𝑐: cavity freq
𝜆: cavity-qubit mixing



Probability dependence



Syndrome measurement


