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In galactic dynamics for studying dark matter,
one important and interesting task is...

Q: How to use
of a galaxy to understand
its galactic dark matter density?

Dark Matter Halo

?

In the previous talk...

https://www.eso.org/public/images/eso1339g/



Hydrodynamics and
Galactic Dynamics

If we consider a galaxy as a
hydrodynamic system N — oo
consisting of stars, phase-space
density of a star (probability of finding
a star with given position and velocity) (&, )
describes the system.

Equation of motion: Boltzmann Equation
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We can estimate the

gravitational acceleration field!
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+n0 unnecessary assumptions T
are involved 36
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If phase-space density
Is determined...
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Outline of Stratec

Galaxy:
hydrodynamic
system

Neural Networks for Density Estimation:
Normalizing Flows

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)
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arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244

Solving Gauss's Equation

—4nGp=V -a
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RS T\ * | Intergalactic dust cloud
PV .- e, |  obscuring stars behind!

e

L SR/ASB00 [ K

Bothersome dusts!

In the previous talk, we have discussed how to estimate
dark matter density in a dusty environment of the Milky Way.




Milky Way

Q: Are there any o
dust-free galaxies to make
this analysis simple?
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© MilkyWay

Q: Are there any [P
dust-free galaxies to make
this analysis simple?

Yes, there are some
dust-free satellite galaixes
of the Milky Way!

Where are they? ey




So far, we have been focused on
the analysis
on our corner of the Milky Way.

If you go further away...
Milky Way

1000 Iy



So far, we have been focused on
the analysis
on our corner of the Milky Way.

If you go further away, you see

_ whole Milky Way,
| but it is difficult
to get

all the kinematic
information of
stars visible here.

Milky Way

No local dark matter
density estimate on
the opposite corner!

£ Diwarf Galaxy




So far, we have been focused on
the analysis

on our corner of the Milky Way.

If you go further further away,

P You see other
satellite galaxies!

Milky Way
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In this talk, we will focus on a type of
satellite galaxy called

dwarf speheroidal galaxy.

Milky Way
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Dwarf Spheroidal Galaxy? S

» A round and faint satellite galaxy,
orbiting the Milky Way.

* Almost no gas and dust obscuring
stars. Whole galaxy is clearly
visible.

Mil'k}y" Wav from Ground

B odtes Urza i
Drwarf rS% w;r:?r Draco
+ + D

warf
A

1Urda Major 1l

bill " ap

85 agittariuz
Chwarf
Magn!:_llaaﬁg
. Clod ¥
C arina
Crvwarf
% Small
b agellanic
Claud

i'..':+ ’ -

Farnaw

Local Group\ o=

http://www.atlasoftheuniverse.com/sattelit.html




Dwarf SpherOIdal galaxy 1S Clean signal source as

a dark matter laboratory! dsph exhibits

less baryon activity.

. . e o SM
Indirect Detection o S
experiments S e
e SM\

Understanding
the dark matter halo shape

— insights on
DM interactions?
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Navarro—Frenk—White (NFW) profile

A commonly used

dark matter halo model Doty profs
empirically identified e
in N-body simulations :

L0
2
= (1+ %)
If dark matter exhibits

non-trivial interactions, - 5 f
'the halo shape may vary 10~° 1074 1073 1072 1071 10° 10t

p(r) =

log (p/po)

Self-interacting dark matter, wave dark matter ....

https://en.wikipedia.org/wiki/Navarro%E2%80%93Frenk%E2%80%93White profile 14/ 36



Disclaimer:
I'm still following up

Example: Wave Dark Matter refs ;)

If DM mass is so light (e.g. very light axions) so that

inter-particle spacing << de Broglie wavelength

DM exhibits wave-like behavior.

Nontrivial stable solution:
Soliton :

— Soliton in /;'
dark matter halo? \ i

1.5 9
1.0 =
Gravitational

"% B =, attraction p !

Wave
spreading




Smoking gun signatures

Fig. from Lam Hui, 2101.11735

1.00 Gyr

y (kpc)
M
=

Projected Density ( ‘3)

Disclaimer:
I'm still following up
refs :)

Soliton Oscillations

- Star center

ULDM center
Soliton fit
re=0.030 kpc
rexp=0.037 kpc

1.10 Gyr — 1.20 Gyr
103 { — 1.21Gyr
2 —— 1.23 Gyr
- 104 y|—— 1.25Gyr
1.26 Gyr
1073 1 " ]
x (kpe) x (kpe) 10 10 10
r [kpc]
1000 —
- - =
— 109_ i —
5 108
1 =
Soliton Core =
‘g 1074
J]
[a]
106_
1072 1071
r [kpc]

100

Fig. from talk by Teodori Luca, IBS Let there be light (particles) Workshop 1 6 / 3 6



Need for model-independent analysis
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As many non-trivial DM halos are considered nowadays,
we need a free-form DM density estimation in order to do
a model-indepdent DM halo analysis.

Again, unsupervised machine learning
can help solving this type of problem!
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|s the ML technique easily applicable to
any of distant dust-free galaxies,

like dwarf spheroidal galaxy?
Answer: both yes and no
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he_cl'.irk mmuater

Model-Independent Spherical Jeans
Analysis using Equivariant
Continuous Normalizing Flows

Collaboration with
K. Hayashi (NIT, Sendai College), S. Horigome (IPMU),
S. Matsumoto (IPMU), M. M. Nojiri (KEK),




Challenges in Analyzing dSphs

 Faint galaxy
— less number of observed stars O[100] ~ O[1000]

* Available kinematic information is limited!
- Position of stars on the sky (x,y) (phot.)
- Pistanreeto-thestars(=)

- Radial velocity (v_z) (spec.)

* Phase space density of stars are not accessible, and hence
we cannot solve the equation of motion yet.. (Jeans equation)
on(v;) N 0P on(v;v;)

_ — ()
ot n(?ll?j o c%,,,

Can we recover the full 6D information somehow?
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Radon Transformation

Can we recover the full 6D information somehow?
- Yes, if we have a 3D projected snapshot of the dSph from all the direction

¥ 5 agittariuz
W

Chwarf

- Fornax Dwarf

N
This tomographic recon;#uction is po%siQIe (e.g. MRI imaging),
but we only have a snapshot from only oneirection...
— Classic solution: as;ﬁjme spherical symmetry.

/
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Spherical Jeans Equation

Introducing spherical symmetry simplifies the Jeans equation, too.

d 23

dd

—nv2 4+ Ene2 = —n—

dr r

dr

List of functions needed for inferring gravitational field (®)

* Number density n(r)

 Radial velocity dispersion (variance) 2
’I"

 Velocity anisotropy

(7

v

203 (r )

Note: velocity anisotropy cannot be determined only using line-of-

sight velocity distribution, we will provide the function (can be true or

not) by hand.

Need to estimate 2 functions from data:

n(r)
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Normalizing Flows:
Neural Density Estimator

Normalizing Flows (NFs) is an artificial neural network
that learns a transformation of random variables.

Base distribution (known)

3 g

2 200

150

count

- 100

- 50

Main idea: if we could find out such transformation, we can use the transformation
formula for the density estimation:

du
dw

We will use this model for estimating the phase space density f(x,v) from the data!

pw (W) = py (@) -
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Equivariant ()
Continous Normalizing Flows

How to model spherically symmetric density using normalizing flows?
— Use Equivariant Continuous Normalizing Flows!

dx dx

— = F(Z,t > = Pf(T ¢
- Invariant (Gaussian) base distribution
- Equivariant vector field
Base distribution (known) Target distribution (data)
-, § 1 2045

3+ L -3 - —L 0

z This setup is very flexible. You may add
physics constraints to neural networks, t00!




Normalizing Flows: How it works? """

Base distribution
3 J

Normalizing flows can fit
arbitrary probability density,
suitable for model-independent analysis!

i
* result of a continuous normalizing flow learning infinitesimal transformations 25/ 36



n(r)

Cored Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density at r << 0)

- Cuspy density
ex) plummer sphere:

. . I 2\ —9/2
Equivariant CNF for modeling o(r) — (1 . %)

cored density profile re
dr dr |z .
. — (T = rtanh | — ¢
dt Tf('CB? t) > dt rtan (TO )f(x7 )

Transformation at the origin is suppressed, remaining as Gaussian-
shape. — cored density

26 / 36



n(r)

Cuspy Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density atr << 1)

- Cuspy density

Equivariant CNF for modeling.
cuspy density profile ex) NFW profile:

=) () =

Apply power-law transform to radial component
c+1

‘T‘ — ’7“‘ Jacobianocr_l?fc

to cored spherical symmetric density model
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Velocity Dispersion Estimation

The velocity dispersion can be simply estimaed using Gaussian
model conditioned on position, as the MLE on variance parameter of
Gaussian is a variance estimator.

(v3(r;0) 0 0
Y (r;0) = 0 vg(r;0) 0
\ O 0 v3(r;6) )

Note that only radial velocity dispersion is modeled by a neural
network, others are given by velocity anisotropy function provided.

V3 (r;0) = v3(r; 0) = v3(r;0) - (1 - B(r))

28 / 36



Here is a 6D density model, but...

Now we have a full 6D phase-space density model ready for solving
spherical Jeans equation.

p(f’) — n(’r; (9) modeled by equivariant CNF for cuspy halos
p(v|r) = GaussPDF (v; u = 0,3(r; 0))

f(7,0) = p(r) x p(v]r)

Wait, we only have x, y, vz.
How can we train this network by MLE?
We cannot use a conventional loss function.

29 / 36



How to train this model?

E/Iodel parameters Likelihood samples

are defined at here

L Sampling S —
6D space  f(7,U;0) > (750) =T(€0) — |
; o raining samples
Abel Projection are at this Ievelj
\
3Dspace  f(z,y,v.;0) (x,y,v,) = Projsp T'(€;0)
KDE
Convolution Smearing

3D smeared space  f x K (x,y,v,;0) h (x,y,v,)+7, n~K

Do MLE using 3D smeared density
and
measured data!
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Loss Function for Modeling
Dwarf Spheroidal Galaxy

* |n order to train the normalizing flow with spherical
symmetry using limited kinematic information, we
minimize the following entropy:

L(6) :/d?ﬁLp*Kh(zﬁL) logp x Kp (W, ;0)

 Importance sampling: N_T training sample (stars) ~
N_K noise samples ~ K_h

N Ng
1 ~ (a) b
L(0) = logp x K —I—_’()H
() a>lb>1 gp h( )

« KDE for the smeared likelihood model:

N_G generated stars from the normalizing flows~ \hat{p}
N Ng

NNK> >110g—ZKh[H(a)+ﬁ(b) (5(6);9)]6-

a=1 b=1




Results: stellar number density

Here we present inferred stellar number density
trained on 2D position information (x, y).

stellar number density

- stellar number density

== estimate +- 1sig stat

—_

=
]
1

count, N x n(7) - 4wridr
=

—
(=]
=}

1.0

: T T ~1.0
102 107! 10°

r [kpc]

1072 107!

r [kpc]

10"

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset m—
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 32/ 36



Results: dark matter mass density

Here we present inferred mass density calculated from
stellar density and velocity dispersion trained on 3D information (x, y, vz).

Enclosed mass M(r), B=10 mass density p(r), g={

— true
—— estimate +- 1sig stat. on v(r), o,.(r)

— estimate +- 1sig stat. on v(r), o,.(r)
— true

1072 107! 10° 1072 107! 10°

r [kpc] r [kpc]

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 33/ 36



Conclusions

* We introduce a model-independent and unbinned spherical Jeans
analysis using normalizing flows, a neural density estimator utilizing
transformation of random variables.

« We invented a loss function for training normalizing flows modeling
dSphs only using projected information, without performing Abel
transformation.

« Using a mock spherical galaxy from Gaia Challenge dataset, we
demonstrated that normalizing flows are capable of estimating phase-
space density information for required solving Jeans equation.

e To do?;

— Generalizing the framework to axisymmetric system.

— Applying our analysis to real dwarf spheroidal galaxies, and
estimate the effect to J-factors when the assumptions are relaxed.
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Al+HEP in East Asia

24-28 Feb 2025
IBS

Asia/Seoul timezone

Overview

Call for Abstracts
Timetable
Registration
Participant List
Maps and Directions
Visa Information

Code of Conduct

41 sunghak.lim@ibs.re.kr
-1 sunghak.lim@rutgers.edu

|
Registration is open :D I
https://indico.ibs.re.kr/event/789/ I
|

_—_—_—_—_—_—_—_—_—_—_—_J

This regional workshop aims to connect researchers in East Asia working in the interdisciplinary field of
Artificial Intelligence and High Energy Physics (Al+HEP). The main topics covered include machine
learning for particle theory, phenomenology and experiments, astrophysics and cosmology, as well as
HEP tools for Al theory.

The workshop will have invited plenary talks, contributed presentations, and ample time for discussions.
Both domain experts and those who are interested in exploring the field are welcome to participate,
especially postdocs and graduate students. The goal is to foster a regional research community and to
stimulate more collaborations.

Invited Speakers:

Cheng-Wei Chiang (National Taiwan University (NTU))
Ahmed Hammad (KEK)

Ji-hoon Kim (Seoul National University)

Conggqiao Li (Peking University)

Vinicius Mikuni (NERSC, Berkeley Lab)

Masahiro Morinaga (ICEPP, University of Tokyo)
Myeonghun Park (Seoultech)

to be updated
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Thank you
for listening!
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