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Machine Learning and High Energy Physics

Machine learning is also a topic of great
interest in high energy physics.

Parton Distribution Function
Jet Classification
Constraining Effective Field Theories
Anomaly Detections
· · ·
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Machine Learning is Still a Mystery

We have a rough idea of what it’s doing,
but when it gets complicated,
we don’t know what’s going on,

similar to our understanding of the brain.

Geoffrey Hinton
(2024 Nobel Laureate in Physics)

6 / 42



Introduction Machine Learning 101 Synaptic Field Theory Realization Summary

Technology and Physics

Technological development sometimes comes before full theoretical
understanding.

Steam Engine & Thermodynamics

[James Watt, 1774] [Sadi Carnot, 1824]
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Technology and Physics

Once the physics is clear, progress tends to accelerate.

Steam Engine & Thermodynamics:
Invention (18C) → Thermodynamics (19C)

⇒ Steam locomotive and First industrial revolution.
Electromagnetic Phenomena & Maxwell’s Theory:
Static Electricity, Compass (Ancient) → Maxwell’s Theory (19C)

⇒ Powerplant, Telephone and Second Industrial Revolution.
Transistor & Semiconductor Physics:
Invention (1947) → Semiconductor Theory (1950s)

⇒ Computer, Internet and Third Industrial Revolution.
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Technology and Physics

Understanding the physics behind machine learning could drive its
future progress.
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II. Machine Learning 101
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Neural Networks
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Universal Approximation Theorem

For any arbitrary continuous function, there exists a set of synaptic
weights such that a neural network can approximate it.

Infinite width cases: proved

Infinite depth or bounded depth and width cases: partially proved

The universal approximation theorem guarantees the existence of a
solution.
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Training of Neural Networks

However, the universal approximation theorem does not provide a
method for finding the solution.

“We are not guaranteed, however, that the training algorithm will be able
to learn that function.”

[Goodfellow, I., Bengio, Y., & Courville, A. (2018). Deep learning. MITP.]

The commonly used training algorithms are gradient descent and its
variants.

It is still unknown whether training algorithms actually find the
solutions guaranteed by the universal approximation theorem.
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Gradient Descent

Prepare the training set (X
[l ]
i ,Y

[l ]
i ) and the define the cost function:

C =
∑
i ,l

(Y
[l ]
i − Z

[l ]
i )2

where Z
[l ]
i is the result of the neural network for X

[l ]
i .

Update the synaptic weights and biases using gradient descent:

∆W
(m)
ij = −η

∂C

∂W
(m)
ij

, ∆b
(m)
i = −η

∂C

∂b
(m)
i

,

with the step size η.
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Minimizing Cost Function

∆W = −η
∂C

∂W
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Issues on Gradient Descent

Gradient descent easily gets stuck in local minima.

Even if it reaches a global minimum, it’s just the minimum of the
given cost function—not necessarily the solution guaranteed by the
universal approximation theorem.

- Training Dataset -

7 + 2 = 9
5 + 3 = 8
4 + 2 = 6
3 + 1 = 4

- Test Artificial intelligence -

5 + 4 = ?
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Importance of Gradient Descent

Nonetheless, almost all training algorithms are based on gradient
descent.

Nearly all of deep learning is powered by one very important algorithm:
stochastic gradient descent. Stochastic gradient descent is an extension of
the gradient descent algorithm.

[Goodfellow, I., Bengio, Y., & Courville, A. (2018). Deep learning. MITP.]
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Various Examples of Neural Networks

There are many ways to develop neural networks.

(M)NIST Input: Image of Numbers

Output: Numbers

NIST(1990), MNIST(1994)

http://thispersondoesnotexist.com
(2019)

(2021)

Input: Noised Image, Keywords

Output: Original Image

(2022)

Input: Previous texts

Output: Next word
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Anyway, Gradient Descent

As shown before, various neural networks can be developed by
exploiting various architectures, activations, cost functions and training
datasets.

However, once those are chosen, training or optimizing the cost
function is proceed according to the gradient descent or its variants.

The gradient descent is a good beginning point to study machine
learning.
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Continuum Limit of Gradient Descent

In the continuum limit, the equation for gradient descent becomes

Ẇ = −η
∂C

∂W
.

From the perspective of physics, this equation is the equation of
motion that determines the dynamics of synaptic weights and biases.

Also, it reminds us that the fundamental degrees of freedom of neural
network are synaptic weights and biases.
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III. Synaptic Field Theory
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Motivation

Input Output
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Field Theoretic Approach to Neural Networks

There exist some previous works trying to apply field theory to neural
networks.

Krippendorf and Spannowsky attempted to develop an effective theory
of outputs of neural network and proposed a relationship between
neural networks and cosmology.

[S. Krippendorf and M. Spannowsky Mach.Learn.Sci.Tech. 3 (2022) 3, 035011]

To do so, they considered the limit where the effect from synaptic
weights and biases becomes a constant.
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Field Theoretic Approach to Neural Networks

Since weights and biases are fundamental building blocks, their effects
should not be neglected.

Although the effective field theory is promising framework, it is still
worth studying the fundamental theory.

The theory dealing with fields developed by the continuum limit of
weights and biases is worth studying.
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Lagrangian Approach to Gradient Descent

The equation for gradient descent is

Ẇ = −η
∂C

∂W

It can be considered as the high-viscosity limit (γ = η−1 ≫ 1) of

Ẅ + γẆ +
∂C

∂W
= 0.
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High-viscosity Limit

βẆ

− ∂C

∂W

High Viscosity Medium

Large Drag Force

Terminal Velocity

Ẅ = 0
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Lagrangian Approach to Gradient Descent

This equation can be derived from the action given as

S =

∫
dt eγt

[
1

2
Ẇ 2 − C

]
Since the terms in the bracket have the form of a kinetic term minus a
potential term, let us introduce the shorthand notation.

S =

∫
dt

√
−gLW

with
√
−g = eγt and LW = 1

2Ẇ
2 − C .
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Gradient Descent as the de Sitter Dynamics

Assume that LW admits a continuum limit, meaning it can be
expressed as an integral of a Lagrangian density composed of fields:

LW =

∫
ddx Lw [w(t, x)].

The action has the form of the action of fields in the curved spacetime:

S =

∫
dd+1x

√
−gLw .

In particular,
√
−g = eγt matches that of a universe dominated by a

positive cosmological constant, a typical example of de Sitter space.
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Synaptic Field Theory

LW includes a sum over the indices of synaptic weights and biases.

By taking the continuum limit of this summation to a spatial integral,
we can develop a field theory in de Sitter spacetime.

The training dataset behaves as the external sources J(x), K (x) in the
synaptic field theory.

The resulting synaptic field theory would be a familiar framework to
those who study high energy physics or cosmology.
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IV. Realization
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Continuum Limit

Here is a typical example of taking continuum limit.
[H. Goldstein, C. Poole, J. Safko (2002). Classical Mechanics, Pearson.]

L =
1

2

∑
i

[mη̇2i − k(ηi+1 − ηi )
2] ⇒ L =

1

2

∫ [
µη̇2 − Y

(
dη

dx

)2
]
dx
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Continuum Limit

In the continuum limit, we substitute the summation with the integral.

The indices are promoted to the spatial coordinates.

The difference between nearby degrees of freedom is promoted to the
spatial derivative.

L =
1

2

∑
i

[uη̇2i − k(ηi+1 − ηi )
2 −mη2i ]

⇒ L =
1

2

∫ [
U η̇2 − K

(
dη

dx

)2

−Mη2

]
dx
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Comments on Locality

The previous example gives a local Lagrangian because every term
involves only variables with the same index.

Series expansion of cost function:

C =
∑

J
(m1)
1 i1j1

W
(m1)
i1j1

+
∑

J
(m1m2)
2 i1j1i2j2

W
(m1)
i1j1

W
(m2)
i2j2

+ · · · .

The coefficients J
(m1)
1 i1j1

and J
(m1m2)
2 i1j1i2j2

depend on the data set.

Note that there are terms involving different indices.
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Nonlocality of Neural Networks

Taking the continuum limit,

L ⊃
∫

d3x J1(x)w(t, x) +

∫
d3xd3y J2(x, y)w(t, x)w(t, y) + · · · .

Here, J1 and J2 act as external sources determined by the training
examples.

Since the second term involves two spatial coordinates x and y, this
Lagrangian is not local.

In general, it is difficult to study a nonlocal theory.
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Spacetime Geometry and Neural Network Architecture

This naive approach expects the nonlocal Lagrangian.

The locality is related to the spacetime geometry.

In the synaptic field theory, the spacetime is given as the continuum
limit of the indices of parameters.

The spatial geometry depends on how to construct the architecture
and how to index the parameters.

We may construct a neural network possessing locality.
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Toy Neural Network

X2N−1

...

X3

X1

Z2N

...

= σ(W1X1 +W2NX2N−1)

Z4 = σ(W5X5 +W4X3)

Z2 = σ(W3X3 +W2X1)

Z0 = Z2N

W2N

· · ·

W4

W3

W2

W1 S =

∫
dtdx

√
−g

[
1

2
[∂tw(t, x)]2

−1

2
K (x)[∂xw(t, x)]2

−1

2
J(x)w(t, x)2

]
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Toy Neural Network

S =

∫
dtdx

√
−g

[1
2
(∂tw1)

2 +
1

2
(∂tw2)

2 − 1

2
m2w2

2

−J1 − J2w2 − J3w2w1 − K1w2∂xw1

−K2w2∂
2
xw2 − K3w2∂

2
xw1 − K4∂xw2∂xw1

−K5w1∂xw2 − K6∂
2
xw2 − K7w1∂

2
xw2 + · · ·

]
.
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Discussions on Toy Neural Network

These examples may be too simple to behave as a practical artificial
intelligence.

However, it is an interesting example that shows the locality.

This locality comes from the architecture of the neural network and
the indexing convention.

One may attempt to develop an architecture and indexing convention
that enables locality to emerge for general neural networks.
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Further Remarks

External sources in the previous example only have the spatial
dependence.

For sources to have explicit time dependence, we may consider the
training algorithm, such as the stochastic gradient descent, involving
time dependence.

By further pushing this possibility, we may consider the system with
interesting symmetry, such as Lorentz symmetry.

It would be interesting to embed cosmological dynamics into neural
networks.
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V. Summary
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Summary Table

The synaptic field theory suggests a friendly framework for physicists
to study machine learning.

Neural Network Synaptic Field Theory

Parameters W
(m)
ij Field w(t, x)

Training examples (X ,Y ) External sources K , J, · · ·
Indices i , j ,m Space x

Training step T Time t
Cost function C Lagrangian L

Step size η Hubble parameter H
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Take-home Message

Understanding the nature of deep learning is the mission of physicists
so more physics is warranted.

Thank you for listening
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Discussions

The linear activation is used and results in the bilinear action.

If we use non-polynomial activations, then higher order interaction terms
should be considered.

The previous example is not Lorentz invariant.

With a time-dependent training algorithm such as stochastic gradient and
carefully designed training datasets, a Lorentz-invariant theory may emerge.

The previous example results in the local action due to the simple
structure and the practical indexing convention.

For the finite depth neural networks, the naive approach of continuum limit
will result in nonlocal terms like∫

ddxddy A(x, y)w(t, x)w(t, y)

As shown in the example, the structure and the indexing convention will be
related to the geometry and locality of the space of the theory.
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High Viscosity Limit

In the high-viscosity limit, η = 1/γ is small, allowing a perturbative
expansion:

W = W(0) + ηW(1) +O(η2).

The equation from the action becomes

1

η
Ẇ(0) +

(
Ẅ(0) + Ẇ(1) +

∂C

∂W

∣∣∣∣
W=W(0)

)
+O(η) = 0.

At O(η−1), we find Ẇ(0) = 0 at any t, which implies Ẅ(0) = 0.
Therefore, at O(η0), we have

Ẇ(1) +
∂C

∂W

∣∣∣∣
W=W(0)

= 0.

It is the equation of motion for the training of neural networks.
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