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O. A Brief Introduction to Inflation and Primordial Black Holes
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From field perturbation 0¢ to curvature perturbation

* Inflation ends/damped osc starts on “comoving” (¢ =const.) 3-surface.
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Primordial Black Hole seeded from Inflation

Hubble Radius VS scale factor
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Primordial Black Hole seeded from Inflation

/Hubble Radius VS scale factor
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Primordial Black Hole seeded from Inflation

/Hubble Radius VS scale factor \ 0 X szzgé Z 5th \
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Primordial Black Hole seeded from Inflation

/Hubble Radius VS scale factor
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Gravitational Waves : A Great Probe to the Dark
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Primordial Black Holes and Gravitational Waves
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l. Primordial Black Holes and Induced Gravitational waves
from Inflation

Based on 2404.02492, 2412.16463, 2504.12035, 2505.09337, 2506.06797 + upcoming works
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Amplifying the Superhorizon Perturbations

s

Several e-folds after horizon crossing, k/(aH) < 1,

ingle field slow roll inflation: %"+ 2(z'/2)R' + k*R = 0

the e.o.m of comoving curvature &£ at leading order of spatial gradient expansion:
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Amplifying the Superhorizon Perturbations

~

Single field slow roll inflation:
), The solution in small k limit:

adiabatic constant mode and
decaying mode.

Look for non-linearity! Ron,) = R(n,) _|_~ . Jnf < (nk ) \
| ' y 200
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\ “The co-moving curvature 1s frozen after horizon crossing” J
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Amplifying the Superhorizon Perturbations

~

The super horizon behavior Decay modes and k* correction
S.Leach, M. Sasaki, D. Wands and A. Liddle , 2001 (astro-ph/0101406)

Given %k, ,’{o':(short\y after) horizon crossing n = 1,
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Amplifying the Superhorizon Perturbations (Single Field)

/ The super horizon behavior Decay modes and k* correction \
S.Leach, M. Sasaki, D. Wands and A. Liddle , 2001 (astro-ph/0101406), Shi Pi, Jianing Wang, 2022 (2209.14183);

C. T. Byrnes, P. S. Cole, and S. P. Patil, 181111158 The “Steepest” growth: &, k* for single field inflation

. Starobinsky’s linear piece-wise model
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Specific features will appear in primordial power spectrum and full PDE see 2412.16463



https://arxiv.org/abs/2412.16463
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Amplifying the Superhorizon Perturbations (Multi Field)
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Amplifying the Superhorizon Perturbations (Multi Field)

R? inflation

/Contributions of the 1so-curvature fields

non-minimally coupled y

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)

—

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)
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Amplifying the Superhorizon Perturbations (Multi Field)

~

/R * inflation + non-minimally coupled ¥

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)
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XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)

~

/R * inflation + non-minimally coupled ¥

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)

/R * inflation + non-minimally coupled ¥ \

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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A non-linear approach: o/NV formalism

Kodama & Sasaki, 1984 Sasaki & Stewart, 1995 (astro-ph/9507001)
ON formalism is used to calculate the full possibility distribution function of %,

*A = ON is based on separate universe approach, leading order of gradient expansion

Background solution ¢ = ¢(NV)

V,u

R = oN = Niot — Niot

NV | linear 6¢
P[R] ~ P[RR\ (64)] —kt
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Amplifying the Superhorizon Perturbations (Multi Field)

/R * inflation + non-minimally coupled ¥ \

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)

/R * inflation + non-minimally coupled ¥ A
The growth rate depends on
the effective mass of early
isocurvature field (y) that
)2 3 dominates the latter inflation.
X

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Amplifying the Superhorizon Perturbations (Multi Field)

/R * inflation + non-minimally coupled ¥

XW, YL. Zhang, M. Sasaki, 2024 (2404.02492)
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Large scale effect: a solution to the 7, tension

/R 2 inflation
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XW, K. Kohri, Tsutomu T. Yanagida, 2025 (2506.06797)
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Large scale effect: a solution to the 7, tension

/R 2 inflation

XW, K. Kohri, Tsutomu T. Yanagida, 2025 (2506.06797)
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~

Whether there are other interesting and unique observables
for two field models?
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Amplifying the Superhorizon Perturbations (Multi Field)
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Inflation Break Stage: Dual PBH Formation
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XW, M. Sasaki et al 2025, (2505.09337)
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Inflation Break Stage: Dual PBH Formation
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XW, M. Sasaki et al 2025, (2505.09337)
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Inflation Break Stage: Dual PBH Formation

-

XW, M. Sasaki et al 2025, (2505.09337)
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ll. Gravitational Waves from Yukawa Force Mergers
— An Alternative to Small Scale Perturbations

Based on 2510.12984



Early halo formation: Theory

Xinpeng Wang (Kavli IPMU)

Amendola, Rubio, and Wetterich, 2017
Savastano, Amendola, Rubio, and
Wetterich, 2019

Flores, Kusenko 2021

Domenech and Sasaki, 2021

The long-range Yukawa forces, if much stronger than Gravity 3* = FJ/F,> 1,
can efficiently form structures, halos, and black holes in the very early universe.

The Basic Lagrangian

L5 Dy~ (m, + DY — S = 0, b0
For two fermions: o ) G n
Credit. Domenech F, = Gmyzj P Y . o —yd |' & Y ’ _ 9 ,52‘:
d? > And? Fc Gm] ,

For fermions in the early universe with a conserved number density: r'tw + 3Hnw = 0,

The o follows the continuity equation: 51// + ‘91/1 = 0, where 91// + ZHHW —

1
2
= V2.



Early halo formation: Theory

.. : 3 32
5k+2H5k——H2Q 1 + p 5, =0
Credit. Domenech 2 il 1 + (kly)_2
Solution
(in R.D.) ' Oy X CIIO(\/605(a/aeq)) T CzKo(\/606(a/aeq)),
Y P
0/ _fl/j 14 1 (kly)—Z]
When

ba(ala,) < 1
(Pure Gravity/ * Io(\/ ba(ala.,)) — const.

Force Screened)

When

(Strong Force)

6a(ala,y) > 1 * IO(\/6a(a/aeq))
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Amendola, Rubio, and Wetterich, 2017
Savastano, Amendola, Rubio, and
Wetterich, 2019

Flores, Kusenko 2021

Domenech and Sasaki, 2021

The perturbation equation of motion for number density perturbation of i fermions:

ol [— B =107k, =1
| B =10 kl, = 10
| —5-0
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Pure Gravity
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Amendola, Rubio, and Wetterich, 2017

Early halo formation: Theory 3\%\;?88;0)?51(?,;61;1511(101&, Rubio, and

Flores, Kusenko 2021
Domenech and Sasaki, 2021
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Amendola, Rubio, and Wetterich, 2017

Ea rly h a I O fo rm ati o n : Th eo ry s\?e\ﬁsﬁi?, zﬁarilgndola,, Rubio, and

Flores, Kusenko 2021
Domenech and Sasaki, 2021

Gravity + Long-range force (2,52 > 1)
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Amendola, Rubio, and Wetterich, 2017

Ea rly h a I O fo rm ati O n : Th eo ry s\%\ﬁggi?, éocx)rilsndola, Rubio, and

Flores, Kusenko 2021
Domenech and Sasaki, 2021

The long-range Yukawa forces, if much stronger than Gravity 3* = FJ/F,> 1,

can efficiently form structures, halos, and black holes in the very early universe.
DM&DE Interaction?
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Early halo formation: Theory

Something is not yet considered.. T “a
For two fermionic minihalos:

:s ¢'l (ml’ ql) t'“\(mz, Q2)
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I i
I I
: G%%myzf :
: Yq1q :
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Isolated Bound System

+ Tidal Force



Radiations from halo binaries:

GW and SW from the Halo Inspirals

(ml ’ ql)

(m29 QZ)

The simplest case: dm¢ < 1 F_y = 2f3°
G

Py o G\ng\z.
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Gravity V.S. Yukawa, Forces
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F

Quadrupole Scalar Waves and

Gravitational Waves are radiated

at the same time.
(Dipole momentum vanishes)

’ ------- ~
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Detectability

Gravity V.S. Yukawa, Forces
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Detectable CBC by LIGO/LISA/ SKA (CPedlt @ianhang)
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Xinpeng Wang (Kavli IPMU)

The fraction of merger relics in dark matter
fiergero = 107

erger,0 —

Radiations from halo binaries:
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Xinpeng Wang (Kavli IPMU)

Radiations from halo binaries: If we consider the potential with Screening:
1 2 e ™
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Xinpeng Wang (Kavli IPMU)

Cooling of the halo After virialization...

it et e L Without dissipation, halos will remain virialized until the
Flores, Lu, Kusenko 2023 ! :
constituent particles decay...

sparse !

|. Radiation from non-relativistic incoherent motions f Asymmetric: 7, = (n,, — n;)/s # 0
1. Radiation from y — y bremsstrahlung ""Fermi Ball Formation ' :

(Bound state formation) = |, Black Hole Formation
lll. Radiation from the surface Halo Annihilation

dense @



Xinpeng Wang (Kavli IPMU)

The scalar charge of the halo

If the degeneracy pressure cannot support anymore...

A black hole will form eventually!

T “No hair theorem™
M :
P ‘
My > Meritical ~ — R o
W 4 = Yinitial 1=

i a r
Scalar M3 o =-:x{ y ¢"—' <Wj‘. T
condensation S Y, 09 . Screened
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Comparing the time scale
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Comparing the time scale
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Interrupted Merger
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Comparing the time scale

10glo(tcool/ tC)
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Xinpeng Wang (Kavli IPMU)

Prompt Merger

The merger concludes
before completing a full
orbital period.



Xinpeng Wang (Kavli IPMU)

Prompt Merger: Short-time GW Burst

When throwing a relativistic point-like charge to a halo...

‘ ‘ » The Gravitational Wave Strain
V °
‘L 2m | yd?sin’ 0
hgg = — hyy = — .
L - D; |1 —-dcos@
M, ql’ R m, q2 Azs‘; ‘( " 1001

The energy emitted is

> concentrated in a

opening angle y‘l,

V9D s just like a y-ray burst.

dy3d? '

Assuming R > 2M:

In the ultra-relativistic limit, AE vy, yg



Xinpeng Wang (Kavli IPMU)

A plot of parameter space constraints
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Xinpeng Wang (Kavli IPMU)

A plot of parameter space constraints
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A plot of parameter space constraints
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Take Home

Primordial Black Holes (PBHSs) are
promising dark matter candidates.

They can form from enhanced small-
scale primordial density
perturbations, from attractive
interactions among dark matter
particles, or through other non-
standard early-Universe
mechanisms...

PBHs also act as sources of
gravitational waves across a wide
range of frequency bands, offering
distinctive signals that can be probed
by future experiments.

Xinpeng Wang (Kavli IPMU)
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