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Introduction

SM is based on gauge group GSM = SU(3)×SU(2)×U(1)Y .

Reason for gauge group, and matter rep., unclear.
Crucial criterion: absence of gauge anomalies!

Strictly w/in SM matter content: allows extension by
gauging Li − Lj! (He, Joshi, Volkas 1991)

No evidence for new interactions of electrons:
Strong constraints on Le − Lµ, Le − Lτ ! (e.g. LEP)

4.2σ deviation in gµ − 2: evidence for new interaction of
muons!

=⇒ consider Lµ − Lτ !
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The Model

L = LSM − gXXρ

(

µ̄γρµ− τ̄ γρτ + νµ,Lγ
ρνµ,L − ντ,Lγ

ρντ,L
)

− 1

4
XρσX

ρσ +
1

2
m2
XXρX

ρ + ψ̄
(

i/∂ −mψ − gXqψ/X
)

ψ

Xρσ = ∂ρXσ − ∂σXρ: new field strength tensor

ψ: DM particle. Is Dirac fermion
=⇒ model is anomaly–free ∀qψ!
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The Model

L = LSM − gXXρ

(

µ̄γρµ− τ̄ γρτ + νµ,Lγ
ρνµ,L − ντ,Lγ

ρντ,L
)

− 1

4
XρσX

ρσ +
1

2
m2
XXρX

ρ + ψ̄
(

i/∂ −mψ − gXqψ/X
)

ψ

Xρσ = ∂ρXσ − ∂σXρ: new field strength tensor

ψ: DM particle. Is Dirac fermion
=⇒ model is anomaly–free ∀qψ!

Relevant parameters:

New gauge coupling gX
Mass of new gauge boson mX

DM mass mψ

DM charge qψ
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Kinetic Mixing

Is 1−loop effect:

γ X

µ−, τ−

µ+, τ+
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6π2 ln
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Kinetic Mixing

Is 1−loop effect:

γ X

µ−, τ−

µ+, τ+

Adds δL = ǫeXρJ
ρ
em, with ǫ = egX

6π2 ln
(

mτ

mµ

)

≃ gX
70

ψ is “millicharged particle”, with charge gψgX/70!
Same is true for νµ, ντ , with charges ±gX/70.

Dark Matter Theory – p. 5/22



gµ − 2

γ

µ+ µ−

X

Gives contribution to aµ = (gµ − 2)/2 (Leveille, 1977):

∆aµ =
g2
X

8π2

∫ 1

0

dx
2m2

µx
2(1 − x)

x2m2
µ + (1 − x)m2

X
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gµ − 2

γ

µ+ µ−

X

Gives contribution to aµ = (gµ − 2)/2 (Leveille, 1977):

∆aµ =
g2
X

8π2

∫ 1

0

dx
2m2

µx
2(1 − x)

x2m2
µ + (1 − x)m2

X

Need:

gX ≃
{

4.4 · 10−4 m2
X ≪ m2

µ

5.4 · 10−4mX

mµ
m2
X ≫ m2

µ
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Neutrino Trident

Refers to νµp→ νµµ
+µ−p. (3 charged tracks, hence “trident”.)

Has been observed in 1980’s (CHARM, CCFR); rediscovered as
BSM test by Pospelov (2006).

νµ

νµ

µ−

µ+

p
p

Z,X

γ

+

νµ

µ−

νµ

µ+

p
p

W

γ

+ . . .
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Neutrino Trident

Refers to νµp→ νµµ
+µ−p. (3 charged tracks, hence “trident”.)

Has been observed in 1980’s (CHARM, CCFR); rediscovered as
BSM test by Pospelov (2006).

νµ

νµ

µ−

µ+

p
p

Z,X

γ

+

νµ

µ−

νµ

µ+

p
p

W

γ

+ . . .

Measurement agrees with SM prediction
=⇒ strong upper bound on gX for given mX !
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Dark Matter

Want to employ usual “thermal WIMP” mechanism:

Ωψh
2 ∼ 0.1 · 1 pb

〈vσ(ψψ̄ → anything else)〉
!
= 0.12

Ω: scaled mass density;

h: scaled Hubble parameter;
〈. . . 〉: thermal average.
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Dark Matter

Want to employ usual “thermal WIMP” mechanism:

Ωψh
2 ∼ 0.1 · 1 pb

〈vσ(ψψ̄ → anything else)〉
!
= 0.12

Ω: scaled mass density;

h: scaled Hubble parameter;
〈. . . 〉: thermal average.

Here:
ψψ̄ → νµ,τ ν̄µ,τ ;
ψψ̄ → ℓ+ℓ− (ℓ = µ, τ), if mψ > mℓ;
ψψ̄ → XX, if mψ > mX .

gµ − 2 constraint: σ(ψψ̄ → anything) is too small unless
mψ ≃ mX/2! (Resonance enhancement.)
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Relic Density
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Relic Density

Warning: MadDM did not work! Used method of Griest and
Seckel (1991)
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Direct DM Detection

Will need mψ < mµ =⇒ scattering on nuclei is not
sensitive!

Dark Matter Theory – p. 10/22



Direct DM Detection

Will need mψ < mµ =⇒ scattering on nuclei is not
sensitive!

Scattering on electrons:

σ(ψe→ ψe) =
µ2
e

π

ǫ2e2q2ψg
2
X

(m2
X + α2m2

e)
2
,

≃ 6 · 10−44 cm2
( gX

10−3

)4
(

10 MeV

mX

)4

q2ψ .

µe = mψme

mψ+me

Exptl bound (SENSEI): σ < 5 · 10−37 cm2: No problem!
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Neff and Hubble Tension

BBN (in particular, 4He fraction) depends on radiation
density, which can be affected by additional “light”

degrees of freedom: ρrad =
[

1 +Neff
7
8

(

4
11

)

4

3

]

ργ.
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degrees of freedom: ρrad =
[

1 +Neff
7
8

(

4
11

)

4

3

]

ργ.

Light ψ annihilate into νµ,τ : decouple from electrons at
Td ≃ 2.3 MeV
=⇒ ψ̄ψ → νµτ ν̄µ,τ annihilations at T < Td increase Neff !
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Neff and Hubble Tension

BBN (in particular, 4He fraction) depends on radiation
density, which can be affected by additional “light”

degrees of freedom: ρrad =
[

1 +Neff
7
8

(

4
11

)

4

3

]

ργ.

Light ψ annihilate into νµ,τ : decouple from electrons at
Td ≃ 2.3 MeV
=⇒ ψ̄ψ → νµτ ν̄µ,τ annihilations at T < Td increase Neff !

Neff = Nν



1 +
1

Nν

∑

i=ψ,X

gi
2
F

(

mi

Tν,D

)





4/3

,

F (x) =
30

7π4

∫

∞

x
dy

(4y2 − x2)
√

y2 − x2

ey ± 1
.
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Result

r = mψ/mX
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Result

r = mψ/mX

BBN: Neff < 3.4
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Neff > 0 can relax Hubble Tension
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Neff > 0 can relax Hubble Tension

Interpret 3.2 ≤ Neff ≤ 3.4 as relaxing Hubble tension.
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Other Constraints

COHERENT: X exchange contributes to νµ scattering
on nuclei via kinetic mixing with photon. Bound slightly
weaker than that from Tridents.
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Other Constraints

COHERENT: X exchange contributes to νµ scattering
on nuclei via kinetic mixing with photon. Bound slightly
weaker than that from Tridents.

Collider limits:
e+e− → µ+µ−µ+µ−: stringent constraints for
2mµ < mX < 10 GeV (BaBar, Belle)
pp→ 3µ+ missing ET : published LHC limits weaker
than Trident bound. MD, M. Shi, Z. Zhang, 1811.12446
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White Dwarf Cooling

White Dwarfs are born hot (collapse of “normal” star)
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White Dwarfs are born hot (collapse of “normal” star)

Cooling in the SM:
Emission of photons from the surface: at all T .
Plasmon decay into neutrinos: important at high T .

New contributions ≤ SM ν̄ν emission: Dreiner et al., 1303.7232
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10 MeV
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White Dwarf Cooling

White Dwarfs are born hot (collapse of “normal” star)

Cooling in the SM:
Emission of photons from the surface: at all T .
Plasmon decay into neutrinos: important at high T .

New contributions ≤ SM ν̄ν emission: Dreiner et al., 1303.7232

=⇒ gX ≤ 5.3 · 10−4 mX

10 MeV

Evidence for BSM contribution for WD cooling! Isern et al.,

1805.00135
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Evidence for additional WD cooling

Black: SM; red, blue: extra cooling (axions)
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ψψ̄ → e+e− in the late Universe

Requires kinetic X − γ mixing
=⇒ σ(ψψ̄ → e+e−) ≃ 2 · 10−5σ(ψψ̄ → νν̄)
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ψψ̄ → e+e− in the late Universe

Requires kinetic X − γ mixing
=⇒ σ(ψψ̄ → e+e−) ≃ 2 · 10−5σ(ψψ̄ → νν̄)

Constrained by CMB (affects early ionization fraction,
hence optical depth for CMB photons):
〈σ(ψψ̄ → e+e−)v〉 ≤ 0.03 fb

( mψ

1 MeV

)

Dark Matter Theory – p. 17/22



ψψ̄ → e+e− in the late Universe

Requires kinetic X − γ mixing
=⇒ σ(ψψ̄ → e+e−) ≃ 2 · 10−5σ(ψψ̄ → νν̄)

Constrained by CMB (affects early ionization fraction,
hence optical depth for CMB photons):
〈σ(ψψ̄ → e+e−)v〉 ≤ 0.03 fb

( mψ

1 MeV

)

Long–standing excess of 511 keV photons from galactic
center can be explained if
10−3fb ≤ 〈σ(ψψ̄ → e+e−)v〉 ·

( mψ

1 MeV

)
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ψψ̄ → e+e− in the late Universe

Requires kinetic X − γ mixing
=⇒ σ(ψψ̄ → e+e−) ≃ 2 · 10−5σ(ψψ̄ → νν̄)

Constrained by CMB (affects early ionization fraction,
hence optical depth for CMB photons):
〈σ(ψψ̄ → e+e−)v〉 ≤ 0.03 fb

( mψ

1 MeV

)

Long–standing excess of 511 keV photons from galactic
center can be explained if
10−3fb ≤ 〈σ(ψψ̄ → e+e−)v〉 ·

( mψ

1 MeV

)

−2
/2 ≤ 1fb

For mψ ≃ 10 MeV: Only ∼ 50% of required e+ can come
from DM annihilation; otherwise too many MeV
photons. (Beacom and Yuksel, astro–ph/0512411)
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Final Results

Grey: excluded by CMB; purple: excluded by BBN (Neff)
green: preferred by gµ − 2; blue: relaxes Hubble tension
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Dependence on DM charge qψ
δ = 4m2

ψ/m
2

X − 1

Black: correct relic density; red: excluded by CMB; green: favored

by 511 keV excess
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Predictions

〈σ(ψ̄ψ → νν̄)〉now ≥ 10−25cm3/s: easily testable at JUNO
via νe→ νe!
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Predictions

〈σ(ψ̄ψ → νν̄)〉now ≥ 10−25cm3/s: easily testable at JUNO
via νe→ νe!

Slightly improved description of IceCube data: resonant
νµ,τ scattering on relic neutrinos changes flavor ratios.
J. Alonso Carpio et al., 2104.15136

∼ 250 γ + nothing events at BELLE-2, with Eγ ≃ √
s/2 in

cms system;
comparable no. of events at super τ/charm factory, if
L = 2 ab−1/year N. Borodatchenkova et al., hep–ph/0510147

Needs single photon trigger!
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Contributing Diagram

e+

e− γ

γ

µ, τ

X

νµ,τ

ν̄µ,τ

Effective geeM ≃ −egµµM/70.
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Summary

Lµ − Lτ model with mψ ∼ mX/2 ≃ 10 MeV,
gX · 4.5 · 10−4, qψ ≃ 1 explains lots of things: Dark
Matter; gµ − 2; easing of Hubble tension; contribution to
511 keV photon flux.
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Summary

Lµ − Lτ model with mψ ∼ mX/2 ≃ 10 MeV,
gX · 4.5 · 10−4, qψ ≃ 1 explains lots of things: Dark
Matter; gµ − 2; easing of Hubble tension; contribution to
511 keV photon flux.

Can be tested by future neutrino experiments (JUNO,
COHERENT-II), possible high–luminosity low–energy
e+e− colliders
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