Frugal $U(1)_X$ models with non-minimal flavor violation for $b \rightarrow s\ell\ell$ anomalies and neutrino mixings

Disha Bhatia The Institute of the Mathematical Sciences, India work done in collaboration with Nishita Desai and Amol Dighe arXiv:2109.07093

October 28, 2021

• Several $b \to s \ell \ell$ anomalies pointing towards lepton flavor universality violations.

- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

 $\bullet\,$ Exists for gauge interactions mediated by Z, W and $\gamma\,$

 $\begin{array}{ll} {\rm BR}(Z \to ee) &=& (3.3662 \pm 0.0066)\,\%, \, {\rm BR}(Z \to \mu\mu) = (3.3632 \pm 0.0042)\,\% \\ {\rm BR}(W \to e\nu) &=& (10.71 \pm 0.16)\,\%, \, {\rm BR}(W \to \mu\nu) = (10.63 \pm 0.15)\,\% \end{array}$

- Violations through higgs ⇒ rate too small
 ⇒ observable effect only through kinematics.
- Violations in gauge interactions may be observable through a rare decay process.
- Process like $B \to X_s \ell \ell$ which occur at one loop become a good testing ground.

 $\bullet\,$ Exists for gauge interactions mediated by Z, W and $\gamma\,$

$$\begin{array}{ll} \mathrm{BR}(Z \to ee) &=& (3.3662 \pm 0.0066) \,\%, \, \mathrm{BR}(Z \to \mu\mu) = (3.3632 \pm 0.0042) \,\% \\ \mathrm{BR}(W \to e\nu) &=& (10.71 \pm 0.16) \,\%, \, \mathrm{BR}(W \to \mu\nu) = (10.63 \pm 0.15) \,\% \end{array}$$

- Violations through higgs ⇒ rate too small
 ⇒ observable effect only through kinematics.
- Violations in gauge interactions may be observable through a rare decay process.
- Process like $B \to X_s \ell \ell$ which occur at one loop become a good testing ground.

 $\bullet\,$ Exists for gauge interactions mediated by Z, W and $\gamma\,$

$$\begin{array}{ll} {\rm BR}(Z \to ee) &=& (3.3662 \pm 0.0066)\,\%, \, {\rm BR}(Z \to \mu\mu) = (3.3632 \pm 0.0042)\,\% \\ {\rm BR}(W \to e\nu) &=& (10.71 \pm 0.16)\,\%, \, {\rm BR}(W \to \mu\nu) = (10.63 \pm 0.15)\,\% \end{array}$$

- Violations through higgs ⇒ rate too small
 ⇒ observable effect only through kinematics.
- Violations in gauge interactions may be observable through a rare decay process.
- Process like $B \to X_s \ell \ell$ which occur at one loop become a good testing ground.

 $\bullet\,$ Exists for gauge interactions mediated by Z, W and $\gamma\,$

$$\begin{array}{ll} {\rm BR}(Z \to ee) &=& (3.3662 \pm 0.0066)\,\%, \, {\rm BR}(Z \to \mu\mu) = (3.3632 \pm 0.0042)\,\% \\ {\rm BR}(W \to e\nu) &=& (10.71 \pm 0.16)\,\%, \, {\rm BR}(W \to \mu\nu) = (10.63 \pm 0.15)\,\% \end{array}$$

- Violations through higgs ⇒ rate too small
 ⇒ observable effect only through kinematics.
- Violations in gauge interactions may be observable through a rare decay process.
- Process like $B \rightarrow X_s \ell \ell$ which occur at one loop become a good testing ground.

• In SM, all generations of quarks and leptons carry identical gauge charges \Rightarrow no tree-level flavor changing neutral currents (FCNC).

$$\mathcal{L}_{
m int} \propto V_{
m rot}^{\dagger} \mathcal{X}_{
m Charge} \, V_{
m rot} = \mathcal{X}_{
m Charge} ~~$$
 (as $V_{
m rot}^{\dagger} \, V_{
m rot} = \mathcal{I}$).

• At one loop, processes in different sectors are $b \to s\gamma/Z$, $t \to c\gamma/Z$ and $\tau \to \mu\gamma/Z$ etc are generated.

• In SM, all generations of quarks and leptons carry identical gauge charges \Rightarrow no tree-level flavor changing neutral currents (FCNC).

$$\mathcal{L}_{
m int} \propto V_{
m rot}^{\dagger} \mathcal{X}_{
m Charge} \, V_{
m rot} = \mathcal{X}_{
m Charge} ~~$$
 (as $V_{
m rot}^{\dagger} \, V_{
m rot} = \mathcal{I}$).

• At one loop, processes in different sectors are $b \to s\gamma/Z$, $t \to c\gamma/Z$ and $\tau \to \mu\gamma/Z$ etc are generated.

• In SM, all generations of quarks and leptons carry identical gauge charges \Rightarrow no tree-level flavor changing neutral currents (FCNC).

$${\cal L}_{
m int} \propto V_{
m rot}^{\dagger} {\cal X}_{
m Charge} \, V_{
m rot} = {\cal X}_{
m Charge} ~~$$
 (as $V_{
m rot}^{\dagger} \, V_{
m rot} = {\cal I}$) .

• At one loop, processes in different sectors are $b \to s\gamma/Z$, $t \to c\gamma/Z$ and $\tau \to \mu\gamma/Z$ etc are generated.

Why rare B decays in the Standard Model are important continued \ldots

- Amplitudes of the FCNC process sensitive to the mass of the fermion mediating in the loop and is $\propto f(m_i^2/m_W^2)$.
- FCNC's with the top as internal propogators are less suppressed ⇒ rare decays of d-type quarks a good testing ground for the SM.
- Decays of B are furthermore special because the physics contributions are largely dominated by the short distance physics (as m_B > Λ_{QCD}), and this decays opens up many phenomenological channels.
- The decays concerning $b \rightarrow s$ more enhanced (V_{ts}) in comparison with $b \rightarrow d$ (V_{td}).
- The decays involving ratios for example

$$R_X = rac{{
m BR}(B o X_s \mu \mu)}{B o X_s ee}$$

Why rare B decays in the Standard Model are important continued ...

- Amplitudes of the FCNC process sensitive to the mass of the fermion mediating in the loop and is $\propto f(m_i^2/m_W^2)$.
- FCNC's with the top as internal propogators are less suppressed ⇒ rare decays of d-type quarks a good testing ground for the SM.
- Decays of B are furthermore special because the physics contributions are largely dominated by the short distance physics (as m_B > Λ_{QCD}), and this decays opens up many phenomenological channels.
- The decays concerning $b \rightarrow s$ more enhanced (V_{ts}) in comparison with $b \rightarrow d$ (V_{td}).
- The decays involving ratios for example

$$R_X = rac{{
m BR}(B o X_s \mu \mu)}{B o X_s ee}$$

Why rare B decays in the Standard Model are important continued \ldots

- Amplitudes of the FCNC process sensitive to the mass of the fermion mediating in the loop and is $\propto f(m_i^2/m_W^2)$.
- FCNC's with the top as internal propogators are less suppressed ⇒ rare decays of d-type quarks a good testing ground for the SM.
- Decays of B are furthermore special because the physics contributions are largely dominated by the short distance physics (as $m_B > \Lambda_{\rm QCD}$), and this decays opens up many phenomenological channels.
- The decays concerning $b \rightarrow s$ more enhanced (V_{ts}) in comparison with $b \rightarrow d \ (V_{td})$.
- The decays involving ratios for example

$$R_X = rac{{
m BR}(B o X_s \mu \mu)}{B o X_s ee}$$

Why rare B decays in the Standard Model are important continued \ldots

- Amplitudes of the FCNC process sensitive to the mass of the fermion mediating in the loop and is $\propto f(m_i^2/m_W^2)$.
- FCNC's with the top as internal propogators are less suppressed ⇒ rare decays of d-type quarks a good testing ground for the SM.
- Decays of B are furthermore special because the physics contributions are largely dominated by the short distance physics (as $m_B > \Lambda_{\rm QCD}$), and this decays opens up many phenomenological channels.
- The decays concerning $b \rightarrow s$ more enhanced (V_{ts}) in comparison with $b \rightarrow d \ (V_{td})$.
- The decays involving ratios for example

$$R_X = rac{{
m BR}(B o X_s \mu \mu)}{B o X_s ee}$$

- Amplitudes of the FCNC process sensitive to the mass of the fermion mediating in the loop and is $\propto f(m_i^2/m_W^2)$.
- FCNC's with the top as internal propogators are less suppressed ⇒ rare decays of d-type quarks a good testing ground for the SM.
- Decays of B are furthermore special because the physics contributions are largely dominated by the short distance physics (as $m_B > \Lambda_{\rm QCD}$), and this decays opens up many phenomenological channels.
- The decays concerning $b \to s$ more enhanced (V_{ts}) in comparison with $b \to d \ (V_{td})$.
- The decays involving ratios for example

$$R_X = rac{\mathrm{BR}(B o X_s \mu \mu)}{B o X_s ee}$$

Current status of $b \rightarrow s \ell \ell$ anomalies from LHCb

LHCb has performed computations in following $b \rightarrow s$ channels:

- $B^+ \to K^+ \mu \mu / B^+ \to K^+ ee$, $B^0 \to K^0_S \mu \mu / B^0 \to K^0_S ee$.
- $B^0 \to K^{*0} \mu \mu / B^0 \to K^{*0}$ ee, $B^0 \to K^{*+} \mu \mu / B^0 \to K^{*+}$ ee.

•
$$\Lambda_b \to K \pi \mu \mu / \Lambda_B \to K \pi e e$$

- Angular observables in: $B^0 o K^{*0} \mu \mu$ and $B^+ o K^{*+} \mu \mu$
- Several BR measurements

• Anomalies in combination point towards some new physics beyond the SM.

- Dominated by statistical uncertainties, systametics under control.
- Belle-2 would soon be able to match with the LHCb predictions.
- LHCb will provide more updates on new ratios.

- Anomalies in combination point towards some new physics beyond the SM.
- Dominated by statistical uncertainties, systametics under control.
- Belle-2 would soon be able to match with the LHCb predictions.
- LHCb will provide more updates on new ratios.

- Anomalies in combination point towards some new physics beyond the SM.
- Dominated by statistical uncertainties, systametics under control.
- Belle-2 would soon be able to match with the LHCb predictions.
- LHCb will provide more updates on new ratios.

- Anomalies in combination point towards some new physics beyond the SM.
- Dominated by statistical uncertainties, systametics under control.
- Belle-2 would soon be able to match with the LHCb predictions.
- LHCb will provide more updates on new ratios.

Dominant effective Hamiltonian for $b \rightarrow s\ell\ell$ in SM

• The effective Lorentz structures generated for vector-currents at one loop, can be understood in terms of Gordon's identity,

$$\Gamma^{\mu} = \gamma^{\mu} A + \frac{1}{m} \sigma^{\mu\nu} q_{\nu} B$$

• The leading order effective $b \rightarrow s$ Hamiltonian in SM:

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \times \left(C_{7\gamma} \mathcal{O}_{7\gamma} + \sum_{i=9,10} C_i \mathcal{O}_i \right)$$

with following operators:

$$\begin{aligned} \mathcal{O}_{7\gamma} &= \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma_{\mu\nu} P_R b \right) F^{\mu\nu} , \ \mathcal{O}_9 &= \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_L b \right] \left[\bar{\ell} \gamma^\mu \ell \right] , \\ \mathcal{O}_{10} &= \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_L b \right] \left[\bar{\ell} \gamma^\mu \gamma_5 \ell \right] . \end{aligned}$$

• In SM, $C_9(m_b) = 4.2$ and $C_{10}(m_b) = -4.13$

Dominant effective Hamiltonian for $b \rightarrow s \ell \ell$ in SM

• The effective Lorentz structures generated for vector-currents at one loop, can be understood in terms of Gordon's identity,

$$\Gamma^{\mu}=\gamma^{\mu}A+rac{1}{m}\sigma^{\mu
u}q_{
u}B$$

• The leading order effective $b \rightarrow s$ Hamiltonian in SM:

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \times \left(C_{7\gamma} \mathcal{O}_{7\gamma} + \sum_{i=9,10} C_i \mathcal{O}_i \right)$$

with following operators:

$$\begin{aligned} \mathcal{O}_{7\gamma} &= \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma_{\mu\nu} P_R b \right) F^{\mu\nu} , \ \mathcal{O}_9 &= \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_L b \right] \left[\bar{\ell} \gamma^\mu \ell \right] , \\ \mathcal{O}_{10} &= \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_L b \right] \left[\bar{\ell} \gamma^\mu \gamma_5 \ell \right] . \end{aligned}$$

• In SM, $C_9(m_b) = 4.2$ and $C_{10}(m_b) = -4.13$

• Global fits : Simultaneous explanation if NP in vector-axial operators

$$\begin{aligned} \mathcal{O}_{9}^{\ell} &= (\overline{b}\gamma_{\mu}P_{L}s) \left(\overline{\ell}\gamma^{\mu}\ell \right), \quad \mathcal{O}_{10}^{\ell} &= (\overline{b}\gamma_{\mu}P_{L}s) \left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell \right), \\ \mathcal{O}_{9}^{\prime\ell} &= (\overline{b}\gamma_{\mu}P_{R}s) \left(\overline{\ell}\gamma^{\mu}\ell \right), \quad \mathcal{O}_{10}^{\prime\ell} &= (\overline{b}\gamma_{\mu}P_{R}s) \left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell \right). \end{aligned}$$

$$R_{K} \approx \frac{|C_{9\mu}^{\rm SM} + C_{9\mu}^{\rm NP} + C_{9\mu}'|^{2} + |C_{10\mu}^{\rm SM} + C_{10\mu}^{\rm NP} + C_{10\mu}'|^{2}}{|C_{9e}^{\rm SM} + C_{9e}^{\rm NP} + C_{9e}'|^{2} + |C_{10e}^{\rm SM} + C_{10e}^{\rm NP} + C_{10e}'|^{2}}$$

- *R_K* is observed to be less than one, either destructive interference in muon sector, or constructive interference in electrons, or combinations of both.
- 1D global fits favor NP contributions in $C_{9\mu}^{NP}$, $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$.
- 2D global fits in $(C_{9\mu}^{NP}, C_{9e}^{NP})$, $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ and $(C_{9\mu}^{NP}, C'_{9\mu})$

• Global fits : Simultaneous explanation if NP in vector-axial operators

$$\begin{array}{lll} \mathcal{O}_{9}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right), \\ \mathcal{O}_{9}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right). \end{array}$$

$$R_{K} \approx \frac{|C_{9\mu}^{\rm SM} + C_{9\mu}^{\rm NP} + C_{9\mu}'|^{2} + |C_{10\mu}^{\rm SM} + C_{10\mu}^{\rm NP} + C_{10\mu}'|^{2}}{|C_{9e}^{\rm SM} + C_{9e}^{\rm NP} + C_{9e}'|^{2} + |C_{10e}^{\rm SM} + C_{10e}^{\rm NP} + C_{10e}'|^{2}}$$

- *R_K* is observed to be less than one, either destructive interference in muon sector, or constructive interference in electrons, or combinations of both.
- 1D global fits favor NP contributions in $C_{9\mu}^{NP}$, $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$.
- 2D global fits in $(C_{9\mu}^{NP}, C_{9e}^{NP})$, $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ and $(C_{9\mu}^{NP}, C'_{9\mu})$

• Global fits : Simultaneous explanation if NP in vector-axial operators

$$\begin{array}{lll} \mathcal{O}_{9}^{\ell} &=& \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\ell} &=& \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right), \\ \mathcal{O}_{9}^{\prime\ell} &=& \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\prime\ell} &=& \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right). \end{array}$$

$$R_{K} \approx \frac{|C_{9\mu}^{\rm SM} + C_{9\mu}^{\rm NP} + C_{9\mu}'|^{2} + |C_{10\mu}^{\rm SM} + C_{10\mu}^{\rm NP} + C_{10\mu}'|^{2}}{|C_{9e}^{\rm SM} + C_{9e}^{\rm NP} + C_{9e}'|^{2} + |C_{10e}^{\rm SM} + C_{10e}^{\rm NP} + C_{10e}'|^{2}}$$

- *R_K* is observed to be less than one, either destructive interference in muon sector, or constructive interference in electrons, or combinations of both.
- 1D global fits favor NP contributions in $C_{9\mu}^{\text{NP}}$, $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}}$.
- 2D global fits in $(C_{9\mu}^{NP}, C_{9e}^{NP})$, $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ and $(C_{9\mu}^{NP}, C'_{9\mu})$

• Global fits : Simultaneous explanation if NP in vector-axial operators

$$\begin{array}{lll} \mathcal{O}_{9}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right), \\ \mathcal{O}_{9}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right). \end{array}$$

$$R_{K} \approx \frac{|C_{9\mu}^{\rm SM} + C_{9\mu}^{\rm NP} + C_{9\mu}'|^{2} + |C_{10\mu}^{\rm SM} + C_{10\mu}^{\rm NP} + C_{10\mu}'|^{2}}{|C_{9e}^{\rm SM} + C_{9e}^{\rm NP} + C_{9e}'|^{2} + |C_{10e}^{\rm SM} + C_{10e}^{\rm NP} + C_{10e}'|^{2}}$$

- *R_K* is observed to be less than one, either destructive interference in muon sector, or constructive interference in electrons, or combinations of both.
- 1D global fits favor NP contributions in $C_{9\mu}^{NP}$, $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$.
- 2D global fits in $(C_{9\mu}^{NP}, C_{9e}^{NP})$, $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ and $(C_{9\mu}^{NP}, C'_{9\mu})$

• Global fits : Simultaneous explanation if NP in vector-axial operators

$$\begin{array}{lll} \mathcal{O}_{9}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\ell} & = & \left(\overline{b}\gamma_{\mu}P_{L}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right), \\ \mathcal{O}_{9}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\ell\right), & \mathcal{O}_{10}^{\prime\ell} & = & \left(\overline{b}\gamma_{\mu}P_{R}s\right)\left(\overline{\ell}\gamma^{\mu}\gamma_{5}\ell\right). \end{array}$$

$$R_{K} \approx \frac{|C_{9\mu}^{\rm SM} + C_{9\mu}^{\rm NP} + C_{9\mu}'|^{2} + |C_{10\mu}^{\rm SM} + C_{10\mu}^{\rm NP} + C_{10\mu}'|^{2}}{|C_{9e}^{\rm SM} + C_{9e}^{\rm NP} + C_{9e}'|^{2} + |C_{10e}^{\rm SM} + C_{10e}^{\rm NP} + C_{10e}'|^{2}}$$

- *R_K* is observed to be less than one, either destructive interference in muon sector, or constructive interference in electrons, or combinations of both.
- 1D global fits favor NP contributions in $C_{9\mu}^{\rm NP}$, $C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$.
- 2D global fits in $(C_{9\mu}^{\rm NP}, C_{9e}^{\rm NP})$, $(C_{9\mu}^{\rm NP}, C_{10\mu}^{\rm NP})$ and $(C_{9\mu}^{\rm NP}, C_{9\mu}')$

Our choice to have new physics effects in pure vector-currents

Figure: 2 σ favored contours from J. Matias et. al (1903.09578, 2104.08921) and F. Mahmoudi et al (1904.08399, 2104.10058)

Comparing 2019's prediction with 2021 now $|C_{9e}| < |C_{9\mu}|$ Global fits prefer negative $C_{9\mu}^{NP}$.

D. Bhatia

10 / 29

• Introduce NP in vector currents i.e. atleast in \mathcal{O}_{9}^{μ} and \mathcal{O}_{9}^{e} .

- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_K \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_e|$
 - dominant Z' effects \Rightarrow unequal X-charges at least for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach

• First assign random charges to SM fields:

- Introduce NP in vector currents i.e. atleast in \mathcal{O}_9^{μ} and \mathcal{O}_9^{e} .
- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_K \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_e|$
 - dominant Z' effects \Rightarrow unequal X-charges at least for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach

• First assign random charges to SM fields:

- Introduce NP in vector currents i.e. atleast in \mathcal{O}_9^{μ} and \mathcal{O}_9^{e} .
- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_K \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_e|$
 - dominant Z' effects \Rightarrow unequal X-charges at least for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach

• First assign random charges to SM fields:

- Introduce NP in vector currents i.e. atleast in \mathcal{O}_9^{μ} and \mathcal{O}_9^{e} .
- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_K \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_e|$
 - dominant Z' effects \Rightarrow unequal X-charges atleast for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach

• First assign random charges to SM fields:
Model building by taking RK anomaly at face value

- Introduce NP in vector currents i.e. atleast in \mathcal{O}_9^{μ} and \mathcal{O}_9^{e} .
- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_{\mathcal{K}} \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_{e}|$
 - dominant Z' effects \Rightarrow unequal X-charges at least for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach

• First assign random charges to SM fields:

• X-charge of $\Phi_{SM} = a_{\Phi_{SM}}$

Model building by taking RK anomaly at face value

- Introduce NP in vector currents i.e. atleast in \mathcal{O}_9^{μ} and \mathcal{O}_9^{e} .
- Can be done either using Z' or leptoquark \Rightarrow We pick on the $U(1)_X$ solutions.
 - $R_{K} \Rightarrow$ diff X-charges for e and μ , certainly $|X_{\mu}| > |X_{e}|$
 - dominant Z' effects \Rightarrow unequal X-charges at least for d-type quarks.
- The gauge charges of $U(1)_X$ symmetry (or the X-charges) determined following a bottom-up approach
- First assign random charges to SM fields:

Quarks	Q1	u _R	d _R	Q ₂	c _R	s _R	Q3	t _R	b _R
$U(1)_X$	x _{1L}	×1 _{uR}	×1 _{dR}	×21	×2cR	×2 _{sR}	×3L	× _{3tR}	× _{3bR}
Leptons	L ₁		e _R	L ₂		μ_R	L ₃		τ_R
$U(1)_X$	У1 _L		у _{1_{eR}}	У2 _L		У2 _{µR}	У3 _L		<i>у</i> з _{т R}

• X-charge of $\Phi_{SM} = a_{\Phi_{SM}}$

They are determined using the theoretical and experimental considerations. 1. Criteria for vector-currents and anomaly cancellation at high scales

- This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
- The generic form of the $U(1)_X$ symmetry as:

 $X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$

Fields	u, d	с, s	t, b	e, ν_e	
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$		

- Anomaly free $U(1)_X$ condition: $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_e + \alpha_\mu + \alpha_\tau = 0$.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

Image: A math a math

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

 $X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$

Fields	u, d	с, s	t, b	e, ν_e	
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$		

- Anomaly free $U(1)_X$ condition: $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_e + \alpha_\mu + \alpha_\tau = 0$.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

A D F A B F A B F A B

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - ${\ensuremath{\bullet}}$ Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

 $X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$

Fields	u, d	с, s	t, b	e, ν_e	
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$		

- Anomaly free $U(1)_X$ condition: $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_e + \alpha_\mu + \alpha_\tau = 0$.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

A D F A B F A B F A B

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

$$X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$$

Fields	<i>u</i> , <i>d</i>	<i>c</i> , <i>s</i>	t, b	e, ν_e	μ, u_{μ}	$ au, u_{ au}$
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$	α_e	α_{μ}	$\alpha_{ au}$

- Anomaly free $U(1)_X$ condition: $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_e + \alpha_\mu + \alpha_\tau = 0$.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

(日)

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

$$X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$$

Fields	<i>u</i> , <i>d</i>	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	$ au, u_{ au}$
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$

- Anomaly free U(1)_X condition: α₁ + α₂ + α₃ + α_e + α_μ + α_τ = 0.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

A D F A B F A B F A B

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

$$X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$$

Fields	<i>u</i> , <i>d</i>	<i>c</i> , <i>s</i>	t, b	e, ν_e	μ, u_{μ}	$ au, u_{ au}$
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$

- Anomaly free U(1)_X condition: α₁ + α₂ + α₃ + α_e + α_μ + α_τ = 0.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

They are determined using the theoretical and experimental considerations.

- 1. Criteria for vector-currents and anomaly cancellation at high scales
 - This can be simply satisfied together by simply assigning vector-like charges to the fermions + adding three right handed neutrinos.
 - Implying some implications of the leptonic symmetries with the neutrino mixing patterns
 - The generic form of the $U(1)_X$ symmetry as:

$$X \equiv \alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 + \alpha_e L_e + \alpha_\mu L_\mu + \alpha_\tau L_\tau ,$$

Fields	<i>u</i> , <i>d</i>	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	$ au, u_{ au}$
X	$\alpha_1/3$	$\alpha_2/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$

- Anomaly free U(1)_X condition: α₁ + α₂ + α₃ + α_e + α_μ + α_τ = 0.
- To generate correct fermion masses $\Rightarrow X$ charge of Φ_{SM} zero
- Managed $C_{10\ell}^{NP} = 0$ and $C_{10\ell}' = 0$.

12 / 29

2. Constraints from $K - \overline{K}$ oscillations

• Unequal X-charges of 1-2 generations of quarks and the large mixing angles stringently constrained by the $K - \overline{K}$ mixings \Rightarrow push new physics to very high scales.

$$\begin{aligned} & \mathcal{K}: \ [V_{dL}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dL}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dL}]_{ud}^{*}[V_{dL}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dL}]_{td}^{*}[V_{dL}]_{ts} , \\ & [V_{dR}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dR}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dR}]_{ud}^{*}[V_{dR}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dR}]_{td}^{*}[V_{dR}]_{ts} , \end{aligned}$$

- The choice α₁ = α₂ and the small values of [V_{dL/R}]_{td} and [V_{dL/R}]_{ts} allows us to bypass the stringent constraints from Kaon-mixing.
- Consequently V_{ckm} in 1-2 sector as

$$\mathcal{Y}_{u}^{\mathrm{SM}} = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad \mathcal{Y}_{d}^{\mathrm{SM}} = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}.$$

- 2. Constraints from $K \overline{K}$ oscillations
 - Unequal X-charges of 1-2 generations of quarks and the large mixing angles stringently constrained by the $K \overline{K}$ mixings \Rightarrow push new physics to very high scales.

$$\begin{aligned} &\mathcal{K}: \ [V_{dL}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dL}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dL}]_{ud}^{*}[V_{dL}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dL}]_{td}^{*}[V_{dL}]_{ts} \\ & [V_{dR}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dR}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dR}]_{ud}^{*}[V_{dR}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dR}]_{td}^{*}[V_{dR}]_{ts} \end{aligned}$$

 The choice α₁ = α₂ and the small values of [V_{dL/R}]_{td} and [V_{dL/R}]_{ts} allows us to bypass the stringent constraints from Kaon-mixing.

• Consequently V_{ckm} in 1-2 sector as

$$\mathcal{Y}^{\rm SM}_u = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad \mathcal{Y}^{\rm SM}_d = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix},$$

2. Constraints from $K - \overline{K}$ oscillations

• Unequal X-charges of 1-2 generations of quarks and the large mixing angles stringently constrained by the $K - \overline{K}$ mixings \Rightarrow push new physics to very high scales.

$$\begin{aligned} &\mathcal{K}: \ [V_{dL}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dL}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dL}]_{ud}^{*}[V_{dL}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dL}]_{td}^{*}[V_{dL}]_{ts} \\ & [V_{dR}^{\dagger} \cdot \mathbb{X}_{q} \cdot V_{dR}]_{12} \quad \propto \quad (\alpha_{1} - \alpha_{2})[V_{dR}]_{ud}^{*}[V_{dR}]_{us} + (\alpha_{3} - \alpha_{2})[V_{dR}]_{td}^{*}[V_{dR}]_{ts} \end{aligned}$$

- The choice $\alpha_1 = \alpha_2$ and the small values of $[V_{dL/R}]_{td}$ and $[V_{dL/R}]_{ts}$ allows us to bypass the stringent constraints from Kaon-mixing.
- Consequently V_{ckm} in 1-2 sector as

$$\mathcal{Y}^{\mathsf{SM}}_u = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad \mathcal{Y}^{\mathsf{SM}}_d = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \ ,$$

• Can be solved by adding $\Phi_{\rm NP}$ with X-charge, $\alpha_1 - \alpha_3$,

$$\mathcal{Y}^{\sf NP}_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & 0 \end{pmatrix}, \quad \mathcal{Y}^{\sf NP}_d = \begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix} \ ,$$

• The rotation angles can be then computed using

$$M_u^{\mathrm{diag}} = V_{uL}^{\dagger} M_u V_{uR} \ , \ M_d^{\mathrm{diag}} = V_{dL}^{\dagger} M_d V_{dR} \ .$$

with $V_{
m CKM} = V_{uL}^{\dagger} V_{dL}$.

- Since the constraints from the up-sector less stringent, we can assume $V_{dL} = V_{\rm CKM}$. V_{dR} mixing angles are suppressed.
- The choice $\alpha_1 = \alpha_2$ and $V_{dL} = V_{CKM}$, renders MFV-like mixings in $B \overline{B}$ mixings:

$$\begin{split} B_d : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{13} \quad \propto \quad [V_{\text{CKM}}]_{td}^* [V_{\text{CKM}}]_{tb} , \\ B_s : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{23} \quad \propto \quad [V_{\text{CKM}}]_{ts}^* [V_{\text{CKM}}]_{tb} . \end{split}$$

• Can be solved by adding $\Phi_{\rm NP}$ with X-charge, $\alpha_1 - \alpha_3$,

$$\mathcal{Y}^{\sf NP}_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & 0 \end{pmatrix}, \quad \mathcal{Y}^{\sf NP}_d = \begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix} \ ,$$

• The rotation angles can be then computed using

$$M_u^{\mathrm{diag}} = V_{uL}^{\dagger} M_u V_{uR} \ , \ M_d^{\mathrm{diag}} = V_{dL}^{\dagger} M_d V_{dR} \ .$$

with $V_{\rm CKM} = V_{uL}^{\dagger} V_{dL}$.

- Since the constraints from the up-sector less stringent, we can assume $V_{dL} = V_{\rm CKM}$. V_{dR} mixing angles are suppressed.
- The choice $\alpha_1 = \alpha_2$ and $V_{dL} = V_{CKM}$, renders MFV-like mixings in $B \overline{B}$ mixings:

$$\begin{split} B_d : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{13} \quad \propto \quad [V_{\text{CKM}}]_{td}^* [V_{\text{CKM}}]_{tb} , \\ B_s : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{23} \quad \propto \quad [V_{\text{CKM}}]_{ts}^* [V_{\text{CKM}}]_{tb} . \end{split}$$

• Can be solved by adding $\Phi_{\rm NP}$ with X-charge, $\alpha_1 - \alpha_3$,

$$\mathcal{Y}^{\sf NP}_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & 0 \end{pmatrix}, \quad \mathcal{Y}^{\sf NP}_d = \begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix} \ ,$$

• The rotation angles can be then computed using

$$M_u^{\rm diag} = V_{uL}^\dagger M_u V_{uR} \ , \ M_d^{\rm diag} = V_{dL}^\dagger M_d V_{dR} \ . \label{eq:Mdiag}$$

with $V_{\rm CKM} = V_{uL}^{\dagger} V_{dL}$.

- Since the constraints from the up-sector less stringent, we can assume $V_{dL} = V_{\text{CKM}}$.
- The choice $\alpha_1 = \alpha_2$ and $V_{dL} = V_{CKM}$, renders MFV-like mixings in $B \overline{B}$ mixings:

$$\begin{split} B_d : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{13} \quad \propto \quad [V_{\text{CKM}}]_{td}^* [V_{\text{CKM}}]_{tb} , \\ B_s : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{23} \quad \propto \quad [V_{\text{CKM}}]_{ts}^* [V_{\text{CKM}}]_{tb} . \end{split}$$

• Can be solved by adding $\Phi_{\rm NP}$ with X-charge, $\alpha_1 - \alpha_3$,

$$\mathcal{Y}^{\rm NP}_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & 0 \end{pmatrix}, \quad \mathcal{Y}^{\rm NP}_d = \begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix} \ ,$$

• The rotation angles can be then computed using

$$M_u^{\rm diag} = V_{uL}^\dagger M_u V_{uR} \ , \ M_d^{\rm diag} = V_{dL}^\dagger M_d V_{dR} \ . \label{eq:Mdiag}$$

with $V_{\rm CKM} = V_{uL}^{\dagger} V_{dL}$.

- Since the constraints from the up-sector less stringent, we can assume $V_{dL} = V_{\text{CKM}}$. V_{dR} mixing angles are suppressed.
- The choice $\alpha_1 = \alpha_2$ and $V_{dL} = V_{CKM}$, renders MFV-like mixings in $B \overline{B}$ mixings:

$$\begin{split} B_d : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{13} \quad \propto \quad [V_{\text{CKM}}]_{td}^* [V_{\text{CKM}}]_{tb} , \\ B_s : & [V_{dL}^{\dagger} \cdot \mathbb{X}_q \cdot V_{dL}]_{23} \quad \propto \quad [V_{\text{CKM}}]_{ts}^* [V_{\text{CKM}}]_{tb} . \end{split}$$

Fields	u, d	c, s	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	$ au, u_{ au}$	$\Phi_{\rm SM}$	Φ_{NP}
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$	0	$(\alpha_1 - \alpha_3)/3$

• A Z' is introduced to induce FCNC's at tree-level.

- ② 3 RHN's to account for vector-like charges for anomaly cancellation.
- 3 A second Higgs doublet to generate the correct CKM mixings.
- Is the particle addition enough?

Fields	u, d	c, s	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	$ au, u_{ au}$	$\Phi_{\rm SM}$	Φ_{NP}
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$	0	$(\alpha_1 - \alpha_3)/3$

- A Z' is introduced to induce FCNC's at tree-level.
- ② 3 RHN's to account for vector-like charges for anomaly cancellation.
- 3 A second Higgs doublet to generate the correct CKM mixings.
- Is the particle addition enough?

Fields	u, d	c, s	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	$ au, u_{ au}$	$\Phi_{\rm SM}$	Φ_{NP}
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_{e}	$lpha_{\mu}$	$\alpha_{ au}$	0	$(\alpha_1 - \alpha_3)/3$

- A Z' is introduced to induce FCNC's at tree-level.
- **2** 3 RHN's to account for vector-like charges for anomaly cancellation.
- S A second Higgs doublet to generate the correct CKM mixings.

Is the particle addition enough?

At present U(1)_X breaks along with the electroweak symmetry.
 Concern 1: Scale of new physics highly constrained from collider searches.

• Accidental global symmetry in the scalar potential

$$\begin{split} V(\Phi_{\rm SM}\Phi_{\rm NP}) &= -m_{\rm SM}^2 \Phi_{\rm SM}^{\dagger} \Phi_{\rm SM} + \frac{\lambda_{\rm SM}}{2} (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM})^2 - m_{\rm NP}^2 \Phi_{\rm NP}^{\dagger} \Phi_{\rm NP} \\ &+ \frac{\lambda_{\rm NP}}{2} (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP})^2 + \lambda (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP}) + \lambda' (\Phi_{\rm SM}^{\dagger} \Phi_{\rm NP}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm SM}). \end{split}$$

• Allows invariance of independent $\Phi_{\rm SM}$ and $\Phi_{\rm NP}$ rotations or $V\times A$ rotations i.e.

 $U(1)_V imes U(1)_A: \quad \Phi_{\mathrm{SM}} \quad o \quad e^{i(heta_V - heta_A)} \Phi_{\mathrm{SM}}, \qquad \Phi_{\mathrm{NP}} o e^{i(heta_V + heta_A)} \Phi_{\mathrm{NP}}.$

- The vector symmetry gets identified with the U(1)_Y.
 Concern 2: Upon EWSB, we get one additional GB due to the breaking of the additional U(1)_A.
- Problem can be avoided with $S\Phi_{\rm NP}^{\dagger}\Phi_{\rm SM}$ term.

- At present U(1)_X breaks along with the electroweak symmetry.
 Concern 1: Scale of new physics highly constrained from collider searches.
- Accidental global symmetry in the scalar potential

$$\begin{split} V(\Phi_{\rm SM}\Phi_{\rm NP}) &= -m_{\rm SM}^2 \Phi_{\rm SM}^{\dagger} \Phi_{\rm SM} + \frac{\lambda_{\rm SM}}{2} (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM})^2 - m_{\rm NP}^2 \Phi_{\rm NP}^{\dagger} \Phi_{\rm NP} \\ &+ \frac{\lambda_{\rm NP}}{2} (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP})^2 + \lambda (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP}) + \lambda' (\Phi_{\rm SM}^{\dagger} \Phi_{\rm NP}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm SM}). \end{split}$$

• Allows invariance of independent $\Phi_{\rm SM}$ and $\Phi_{\rm NP}$ rotations or $V\times A$ rotations i.e.

 $U(1)_V imes U(1)_{\mathcal{A}}: \quad \Phi_{\mathrm{SM}} \quad o \quad e^{i(heta_V - heta_A)} \Phi_{\mathrm{SM}}, \qquad \Phi_{\mathrm{NP}} o e^{i(heta_V + heta_A)} \Phi_{\mathrm{NP}}.$

- The vector symmetry gets identified with the U(1)_Y.
 Concern 2: Upon EWSB, we get one additional GB due to the breaking of the additional U(1)_A.
- Problem can be avoided with $S\Phi_{\rm NP}^{\dagger}\Phi_{\rm SM}$ term.

- At present U(1)_X breaks along with the electroweak symmetry.
 Concern 1: Scale of new physics highly constrained from collider searches.
- Accidental global symmetry in the scalar potential

$$\begin{split} V(\Phi_{\rm SM}\Phi_{\rm NP}) &= -m_{\rm SM}^2 \Phi_{\rm SM}^{\dagger} \Phi_{\rm SM} + \frac{\lambda_{\rm SM}}{2} (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM})^2 - m_{\rm NP}^2 \Phi_{\rm NP}^{\dagger} \Phi_{\rm NP} \\ &+ \frac{\lambda_{\rm NP}}{2} (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP})^2 + \lambda (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP}) + \lambda' (\Phi_{\rm SM}^{\dagger} \Phi_{\rm NP}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm SM}). \end{split}$$

• Allows invariance of independent $\Phi_{\rm SM}$ and $\Phi_{\rm NP}$ rotations or $V\times A$ rotations i.e.

$$U(1)_V imes U(1)_A: \quad \Phi_{\mathrm{SM}} \quad o \quad e^{i(heta_V - heta_A)} \Phi_{\mathrm{SM}}, \qquad \Phi_{\mathrm{NP}} o e^{i(heta_V + heta_A)} \Phi_{\mathrm{NP}}.$$

- The vector symmetry gets identified with the U(1)_Y.
 Concern 2: Upon EWSB, we get one additional GB due to the breaking of the additional U(1)_A.
- Problem can be avoided with $S\Phi_{\rm NP}^{\dagger}\Phi_{\rm SM}$ term.

- At present U(1)_X breaks along with the electroweak symmetry.
 Concern 1: Scale of new physics highly constrained from collider searches.
- Accidental global symmetry in the scalar potential

$$\begin{split} V(\Phi_{\rm SM}\Phi_{\rm NP}) &= -m_{\rm SM}^2 \Phi_{\rm SM}^{\dagger} \Phi_{\rm SM} + \frac{\lambda_{\rm SM}}{2} (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM})^2 - m_{\rm NP}^2 \Phi_{\rm NP}^{\dagger} \Phi_{\rm NP} \\ &+ \frac{\lambda_{\rm NP}}{2} (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP})^2 + \lambda (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP}) + \lambda' (\Phi_{\rm SM}^{\dagger} \Phi_{\rm NP}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm SM}). \end{split}$$

• Allows invariance of independent $\Phi_{\rm SM}$ and $\Phi_{\rm NP}$ rotations or $V\times A$ rotations i.e.

$$U(1)_V imes U(1)_{\mathcal{A}}: \quad \Phi_{\mathrm{SM}} \quad o \quad e^{i(heta_V - heta_A)} \Phi_{\mathrm{SM}}, \qquad \Phi_{\mathrm{NP}} o e^{i(heta_V + heta_A)} \Phi_{\mathrm{NP}}.$$

- The vector symmetry gets identified with the U(1)_Y.
 Concern 2: Upon EWSB, we get one additional GB due to the breaking of the additional U(1)_A.
- Problem can be avoided with $S\Phi_{\rm NP}^{\dagger}\Phi_{\rm SM}$ term.

- At present U(1)_X breaks along with the electroweak symmetry.
 Concern 1: Scale of new physics highly constrained from collider searches.
- Accidental global symmetry in the scalar potential

$$\begin{split} V(\Phi_{\rm SM}\Phi_{\rm NP}) &= -m_{\rm SM}^2 \Phi_{\rm SM}^{\dagger} \Phi_{\rm SM} + \frac{\lambda_{\rm SM}}{2} (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM})^2 - m_{\rm NP}^2 \Phi_{\rm NP}^{\dagger} \Phi_{\rm NP} \\ &+ \frac{\lambda_{\rm NP}}{2} (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP})^2 + \lambda (\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm NP}) + \lambda' (\Phi_{\rm SM}^{\dagger} \Phi_{\rm NP}) (\Phi_{\rm NP}^{\dagger} \Phi_{\rm SM}). \end{split}$$

• Allows invariance of independent $\Phi_{\rm SM}$ and $\Phi_{\rm NP}$ rotations or $V\times A$ rotations i.e.

$$U(1)_V imes U(1)_A: \quad \Phi_{\mathrm{SM}} \quad o \quad e^{i(heta_V - heta_A)} \Phi_{\mathrm{SM}}, \qquad \Phi_{\mathrm{NP}} o e^{i(heta_V + heta_A)} \Phi_{\mathrm{NP}}.$$

- The vector symmetry gets identified with the U(1)_Y.
 Concern 2: Upon EWSB, we get one additional GB due to the breaking of the additional U(1)_A.
- Problem can be avoided with $S\Phi_{\rm NP}^{\dagger}\Phi_{\rm SM}$ term.

Fields	u, d	<i>c</i> , <i>s</i>	t, b	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- Theory considerations: The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

Fields	u, d	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- Theory considerations: The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

Fields	u, d	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- Theory considerations: The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

Fields	u, d	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- **Theory considerations:** The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

Fields	u, d	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- Theory considerations: The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

Fields	u, d	<i>c</i> , <i>s</i>	<i>t</i> , <i>b</i>	e, ν_e	μ, u_{μ}	τ, ν_{τ}	$\Phi_{ m NP}, S$
X	$\alpha_1/3$	$\alpha_1/3$	$\alpha_3/3$	α_e	$lpha_{\mu}$	α_{τ}	$\left(\alpha_1 - \alpha_3\right)/2 \equiv X_S$

- Theory considerations: The charges must satisfy the anomaly equation. add 3 ν_R 's and assign vector-like charges.
- $K \overline{K}$: $\alpha_1 = \alpha_2$
- **Global fits:** sign of $C_{9\mu}$ to be negative.
- Charges in the lepton sector not too constrained only $|\alpha_e| < |\alpha_\mu|$ Ques. Can we remove the arbitrariness?

• Presence of 3 ν_R 's along with vev of S:

$$[M_R^S]_{ij} = [M_R]_{ij} + \frac{v_S}{\sqrt{2}} [\mathcal{Y}_R]_{ij} \neq 0 \quad \text{if} \ \alpha_i + \alpha_j = 0 \ , \pm X_S \ .$$

$$m_{\nu_L} = -[m_D]^T [M_R^S]^{-1} [m_D] = U_{\rm PMNS} \, m_{\nu_L}^{\rm diag} \, U_{\rm PMNS}^T \, .$$

- Basis of diagonal m_D and charged lepton mass matrix \Rightarrow determine allowed textures of m_{ν_I} or M_R^S (J. Heeck et al (1203.4951)).
- The experimental quantities are described by 9 parameters three mixing angles, three phases, and three mass terms, among which we know 5 quantities ⇒ can allow for two zeros at-max (owing to general mass matrix being complex).

• Presence of 3 ν_R 's along with vev of S:

$$[M_R^S]_{ij} = [M_R]_{ij} + \frac{v_S}{\sqrt{2}} [\mathcal{Y}_R]_{ij} \neq 0 \quad \text{if} \ \alpha_i + \alpha_j = 0 \ , \pm X_S \ .$$

$$m_{
u_L} = -[m_D]^T [M_R^S]^{-1} [m_D] = U_{\mathrm{PMNS}} m_{
u_L}^{\mathrm{diag}} U_{\mathrm{PMNS}}^T$$
 .

- Basis of diagonal m_D and charged lepton mass matrix \Rightarrow determine allowed textures of m_{ν_I} or M_R^S (J. Heeck et al (1203.4951)).
- The experimental quantities are described by 9 parameters three mixing angles, three phases, and three mass terms, among which we know 5 quantities ⇒ can allow for two zeros at-max (owing to general mass matrix being complex).

• Presence of 3 ν_R 's along with vev of S:

$$[M_R^S]_{ij} = [M_R]_{ij} + \frac{v_S}{\sqrt{2}} [\mathcal{Y}_R]_{ij} \neq 0 \quad \text{if} \ \alpha_i + \alpha_j = 0 \ , \pm X_S \ .$$

$$m_{\nu_L} = -[m_D]^T [M_R^S]^{-1} [m_D] = U_{\mathrm{PMNS}} m_{\nu_L}^{\mathrm{diag}} U_{\mathrm{PMNS}}^T .$$

- Basis of diagonal m_D and charged lepton mass matrix \Rightarrow determine allowed textures of m_{ν_L} or M_R^S (J. Heeck et al (1203.4951)).
- The experimental quantities are described by 9 parameters three mixing angles, three phases, and three mass terms, among which we know 5 quantities ⇒ can allow for two zeros at-max (owing to general mass matrix being complex).

• Presence of 3 ν_R 's along with vev of S:

$$[M_R^S]_{ij} = [M_R]_{ij} + \frac{v_S}{\sqrt{2}} [\mathcal{Y}_R]_{ij} \neq 0 \quad \text{if} \ \alpha_i + \alpha_j = 0 \ , \pm X_S \ .$$

$$m_{\nu_L} = -[m_D]^T [M_R^S]^{-1} [m_D] = U_{\mathrm{PMNS}} \; m_{\nu_L}^{\mathrm{diag}} \; U_{\mathrm{PMNS}}^T \; .$$

- Basis of diagonal m_D and charged lepton mass matrix \Rightarrow determine allowed textures of m_{ν_L} or M_R^S (J. Heeck et al (1203.4951)).
- The experimental quantities are described by 9 parameters three mixing angles, three phases, and three mass terms, among which we know 5 quantities ⇒ can allow for two zeros at-max (owing to general mass matrix being complex).

• Leptonic symmetries constructed using allowed textures:

•
$$a(L_{\mu} - L_{\tau})$$
 or aL_{μ} , with $X_{S} = \pm a$,
• $a(L_{e} - 3L_{\mu} + L_{\tau})$ or $a(L_{e} \pm 3L_{\mu} - L_{\tau})$, with $X_{S} = \pm 2a$.

- Since X_S = (α₁ α₃)/3, and charges are related by anomaly equation, turns out we can determine all charges in terms of *a*.
- We fix *a* by normalizing $\alpha_{\mu} = 1$.

- Leptonic symmetries constructed using allowed textures:
 - $a(L_{\mu}-L_{\tau})$ or aL_{μ} , with $X_{S}=\pm a$,
 - $a(L_e 3L_\mu + L_\tau)$ or $a(L_e \pm 3L_\mu L_\tau)$, with $X_S = \pm 2a$.
- Since X₅ = (α₁ α₃)/3, and charges are related by anomaly equation, turns out we can determine all charges in terms of *a*.
- We fix *a* by normalizing $\alpha_{\mu} = 1$.
- Leptonic symmetries constructed using allowed textures:
 - $a(L_{\mu} L_{\tau})$ or aL_{μ} , with $X_S = \pm a$,
 - $a(L_e 3L_\mu + L_\tau)$ or $a(L_e \pm 3L_\mu L_\tau)$, with $X_S = \pm 2a$.
- Since X₅ = (α₁ α₃)/3, and charges are related by anomaly equation, turns out we can determine all charges in terms of *a*.
- We fix a by normalizing $\alpha_{\mu} = 1$.

First-two generations of quarks always charged under U(1)_X ⇒ stringent constraints from the collider direct searches.

Category	Scenario	X _S	Leptonic symmetry	α_1	α_2	α_3	α_e	α_{μ}	α_{τ}
A	A1	-1	$L_{\mu} - L_{\tau}$	$^{-1}$	$^{-1}$	2	0	1	$^{-1}$
	A2	-1	L_{μ}	$-\frac{4}{3}$	$-\frac{4}{3}$	53	0	1	0
В	B1	$-\frac{2}{3}$	$L_e - 3L_\mu + L_\tau$	$-\frac{7}{9}$	$-\frac{7}{9}$	<u>11</u> 9	$-\frac{1}{3}$	1	- 1
	B2	$-\frac{2}{3}$	$L_e - 3L_\mu - L_\tau$	-1	-1	i	$-\frac{1}{3}$	1	$\frac{1}{3}$
С	C1	$-\frac{2}{3}$	$L_e + 3L_\mu - L_\tau$	-1	-1	1	$\frac{1}{3}$	1	$-\frac{1}{3}$
AA	AA1	1	$L_{\mu} - L_{\tau}$	1	1	-2	0	1	$^{-1}$
	AA2	1	L_{μ}	23	23	$-\frac{7}{3}$	0	1	0
BB	BB1	23	$L_e - 3L_\mu + L_\tau$	50	5	$-\frac{13}{9}$	$-\frac{1}{3}$	1	$-\frac{1}{3}$
	BB2	23	$L_e - 3L_\mu - L_\tau$	1/3	1/3	$-\frac{5}{3}$	$-\frac{1}{3}$	1	$\frac{1}{3}$
CC	CC1	23	$L_e + 3L_\mu - L_\tau$	1/3	13	$-\frac{5}{3}$	1/3	1	$-\frac{1}{3}$

The effective Hamiltonian relevant for the process $B o {\cal K}^{(*)}\ell\ell$ is

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -\left(\frac{4G_F}{\sqrt{2}}\frac{e^2}{(4\pi)^2}[V_{\text{CKM}}]_{tb}[V_{\text{CKM}}]_{ts}^* \ C_{9\ell}^{\text{SM}}\right)\left(\overline{s_L}\gamma^{\mu}b_L\right)\left(\bar{\ell}\gamma_{\mu}\ell\right) \\ &- \left(\frac{X_S \,\alpha_\ell \,g_{Z'}^2}{M_{Z'}^2}[V_{dL}]_{tb}[V_{dL}]_{ts}^*\right)\left(\overline{s_L}\gamma^{\mu}b_L\right)\left(\bar{\ell}\gamma_{\mu}\ell\right) \ . \end{aligned}$$

Since $\mathit{C}_{9\ell} = \mathit{C}^{\rm SM}_{9\ell} + \mathit{C}^{\rm NP}_{9\ell}$, the above equation is equivalent to

$$C_{9\ell}^{\rm NP} \ = \ \frac{4\sqrt{2}\,\pi^2\,g_{Z'}^2}{G_F\,M_{Z'}^2\,e^2}\cdot X_S\,\alpha_\ell \; .$$

Sign of $C_{9\mu}$ hence sensitive to X_S (in the normalization $\alpha_{\mu} = 1$):

Category	Scenario	X_S	Leptonic symmetry	α_1	α_2	α_3	α_e	α_{μ}	α_{τ}
A	A1	-1	$L_{\mu} - L_{\tau}$	$^{-1}$	$^{-1}$	2	0	1	$^{-1}$
	A2	-1	L_{μ}	$-\frac{4}{3}$	$-\frac{4}{3}$	53	0	1	0
В	B1	$-\frac{2}{3}$	$L_e - 3L_\mu + L_\tau$	$-\frac{7}{9}$	$-\frac{7}{9}$	11	$-\frac{1}{3}$	1	$-\frac{1}{3}$
	B2	$-\frac{2}{3}$	$L_e - 3L_\mu - L_\tau$	-1	-1	ĩ	$-\frac{1}{3}$	1	$\frac{1}{3}$
C	C1	$-\frac{2}{3}$	$L_e + 3L_\mu - L_\tau$	$^{-1}$	-1	1	13	1	$-\frac{1}{3}$

• The scenarios are same as considered in our previous papaer (1701.05825) expect category D, which consisted of $|\alpha_e| = |\alpha_\mu| \Rightarrow$ disfavored from global fits.

Note that we have clubbed symmetries into categories on the basis of the constraints from b → s measurements.
 Sensitive to α₁ − α₃ or X_s instead of individual X-charges of quarks.

Category	Scenario	X _S	Leptonic symmetry	α_1	α_2	α_3	α_e	α_{μ}	α_{τ}
A	A1	-1	$L_{\mu} - L_{\tau}$	$^{-1}$	$^{-1}$	2	0	1	$^{-1}$
	A2	-1	L_{μ}	$-\frac{4}{3}$	$-\frac{4}{3}$	53	0	1	0
В	B1	$-\frac{2}{3}$	$L_e - 3L_\mu + L_\tau$	$-\frac{7}{9}$	$-\frac{7}{9}$	11	$-\frac{1}{3}$	1	$-\frac{1}{3}$
	B2	$-\frac{2}{3}$	$L_e - 3L_\mu - L_\tau$	$^{-1}$	-1	i	$-\frac{1}{3}$	1	13
С	C1	$-\frac{2}{3}$	$L_e + 3L_\mu - L_\tau$	$^{-1}$	$^{-1}$	1	1/3	1	$-\frac{1}{3}$

- The scenarios are same as considered in our previous papaer (1701.05825) expect category D, which consisted of $|\alpha_e| = |\alpha_\mu| \Rightarrow$ disfavored from global fits.
- Note that we have clubbed symmetries into categories on the basis of the constraints from b → s measurements.
 Sensitive to α₁ α₃ or X₅ instead of individual X-charges of quarks.

Testing scenarios against experimental constraints: Case A: MFV-like mixings with $V_{dL} = V_{CKM}$

Figure: Collider constraints from: ATLAS(13.3 fb⁻¹): ATLAS-CONF-2016-045 and CMS(140 fb⁻¹):arXiv:2103.02708 and mixing constraints from UTfit collaboration

The symmetries are disfavored by combined constraints from global fits+ neutral-meson mixing and collider searches

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

• Scenarios with $V_{dL} = V_{\rm CKM}$ ruled out by combined constraints.

• To bring collider constraints compatible with global fit, one needs to compensate for the ratio $g_{Z'}^2/M_{Z'}^2$ meaning move towards the decoupling regime.

$$C_{9\mu}^{\rm NP} = \frac{4\sqrt{2}\pi^2 g_{Z'}^2}{G_F M_{Z'}^2 e^2} \cdot X_S \cdot \frac{[V_{dL}]_{tb} [V_{dL}^*]_{ts}}{[V_{\rm CKM}]_{tb} [V_{\rm CKM}]_{ts}^*}$$

- Possible when $|\mathcal{R}_{mix}| \equiv |\frac{[V_{dL}]_{tb}[V_{dL}^*]_{ts}}{[V_{CKM}]_{tb}^*}| > 1.$ This is capable of generating scenarios with positive X-
- Consider a simple scenario, where V_{dL} describes mixing of only second-third generation left handed d-type quarks.

$$\mathcal{R}_{\text{mix}} \approx rac{[\sin 2 heta_{23}]_{dL}}{[\sin 2 heta_{23}]_{\mathrm{CKM}}}$$

- Scenarios with $V_{dL} = V_{\rm CKM}$ ruled out by combined constraints.
- To bring collider constraints compatible with global fit, one needs to compensate for the ratio $g_{Z'}^2/M_{Z'}^2$ meaning move towards the decoupling regime.

$$C_{9\mu}^{\rm NP} = \frac{4\sqrt{2}\pi^2 g_{Z'}^2}{G_F M_{Z'}^2 e^2} \cdot X_S \cdot \frac{[V_{dL}]_{tb} [V_{dL}^*]_{ts}}{[V_{\rm CKM}]_{tb} [V_{\rm CKM}]_{ts}^*}$$

- Possible when $|\mathcal{R}_{mix}| \equiv |\frac{[V_{dL}]_{tb}[V_{dL}^*]_{ts}}{[V_{CKM}]_{tb}^*[V_{CKM}]_{ts}^*}| > 1.$ This is capable of generating scenarios with positive X_S
- Consider a simple scenario, where V_{dL} describes mixing of only second-third generation left handed d-type quarks.

$$\mathcal{R}_{\text{mix}} \approx rac{[\sin 2 heta_{23}]_{dL}}{[\sin 2 heta_{23}]_{\mathrm{CKM}}}$$

- Scenarios with $V_{dL} = V_{\rm CKM}$ ruled out by combined constraints.
- To bring collider constraints compatible with global fit, one needs to compensate for the ratio $g_{Z'}^2/M_{Z'}^2$ meaning move towards the decoupling regime.

$$C_{9\mu}^{\rm NP} = \frac{4\sqrt{2}\pi^2 g_{Z'}^2}{G_F M_{Z'}^2 e^2} \cdot X_S \cdot \frac{[V_{dL}]_{tb} [V_{dL}^*]_{ts}}{[V_{\rm CKM}]_{tb}^* [V_{\rm CKM}]_{ts}^*}$$

- Possible when $|\mathcal{R}_{mix}| \equiv |\frac{[V_{dL}]_{tb}[V_{dL}^*]_{ts}}{[V_{CKM}]_{tb}[V_{CKM}]_{ts}^*}| > 1.$ This is capable of generating scenarios with positive X_S
- Consider a simple scenario, where V_{dL} describes mixing of only second-third generation left handed d-type quarks.

$$\mathcal{R}_{\text{mix}} pprox rac{[\sin 2 heta_{23}]_{dL}}{[\sin 2 heta_{23}]_{ ext{CKM}}}$$

- Scenarios with $V_{dL} = V_{\rm CKM}$ ruled out by combined constraints.
- To bring collider constraints compatible with global fit, one needs to compensate for the ratio $g_{Z'}^2/M_{Z'}^2$ meaning move towards the decoupling regime.

$$C_{9\mu}^{\rm NP} = \frac{4\sqrt{2}\pi^2 g_{Z'}^2}{G_F M_{Z'}^2 e^2} \cdot X_S \cdot \frac{[V_{dL}]_{tb} [V_{dL}^*]_{ts}}{[V_{\rm CKM}]_{tb}^* [V_{\rm CKM}]_{ts}^*}$$

- Possible when $|\mathcal{R}_{mix}| \equiv |\frac{[V_{dL}]_{tb}[V_{dL}^*]_{ts}}{[V_{CKM}]_{tb}[V_{CKM}]_{ts}^*}| > 1.$ This is capable of generating scenarios with positive X_S
- Consider a simple scenario, where V_{dL} describes mixing of only second-third generation left handed d-type quarks.

$$\mathcal{R}_{\text{mix}} \approx \frac{[\sin 2\theta_{23}]_{dL}}{[\sin 2\theta_{23}]_{\rm CKM}}$$

• $C_{9\mu}$ sensitive to $X_S \cdot \mathcal{R}_{mix}$, while $B_s - \overline{B_s}$ sensitive to $X_S^2 \cdot \mathcal{R}_{mix}^2$

• The effective Hamiltonian is given as:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F^2}{16\pi^2} M_W^2 \left([V_{\text{CKM}}]_{tb} [V_{\text{CKM}}^*]_{ts} \right)^2 \left(C_{B_s}^{\text{SM}}(\mu) + C_{B_s}^{\text{NP}}(\mu) \right) \left[\overline{b} \gamma^{\mu} (1 - \gamma_5) s \right]^2$$
where

$$\begin{split} C_{B_s}^{\mathsf{NP}}(M_{Z'}) &= \frac{2\pi^2 X_5^2 g_{Z'}^2}{M_{Z'}^2 G_F^2 M_W^2} \cdot \frac{([V_{dL}]_{tb}[V_{dL}]_{ts}^*)^2}{([V_{\mathrm{CKM}}]_{tb}[V_{\mathrm{CKM}}^*]_{ts})^2} ,\\ &= \frac{2\pi^2 X_5^2 g_{Z'}^2}{M_{Z'}^2 G_F^2 M_W^2} \cdot \mathcal{R}_{\mathrm{mix}}^2 . \end{split}$$

- For symmetries with $X_S < 0$, $\theta_{23,dL}$ lies in the first quadrant.
- For symmetries with $X_S > 0$, $\theta_{23,dL}$ lies in the second quadrant.

- $C_{9\mu}$ sensitive to $X_S \cdot \mathcal{R}_{mix}$, while $B_s \overline{B_s}$ sensitive to $X_S^2 \cdot \mathcal{R}_{mix}^2$
- The effective Hamiltonian is given as:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F^2}{16\pi^2} M_W^2 \left([V_{\text{CKM}}]_{tb} [V_{\text{CKM}}^*]_{ts} \right)^2 \left(C_{B_s}^{\text{SM}}(\mu) + C_{B_s}^{\text{NP}}(\mu) \right) \left[\overline{b} \gamma^{\mu} (1 - \gamma_5) s \right]^2$$
where,

$$\begin{split} C_{B_s}^{\rm NP}(M_{Z'}) &= \quad \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 M_W^2} \cdot \frac{\left([V_{dL}]_{tb}[V_{dL}]_{ts}^*\right)^2}{\left([V_{\rm CKM}]_{tb}[V_{\rm CKM}^*]_{ts}\right)^2} \;, \\ &= \quad \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 M_W^2} \cdot \mathcal{R}_{\rm mix}^2 \;. \end{split}$$

- For symmetries with $X_S < 0$, $\theta_{23,dL}$ lies in the first quadrant.
- For symmetries with $X_S > 0$, $\theta_{23,dL}$ lies in the second quadrant.

- $C_{9\mu}$ sensitive to $X_S \cdot \mathcal{R}_{mix}$, while $B_s \overline{B_s}$ sensitive to $X_S^2 \cdot \mathcal{R}_{mix}^2$
- The effective Hamiltonian is given as:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F^2}{16\pi^2} M_W^2 \left([V_{\text{CKM}}]_{tb} [V_{\text{CKM}}^*]_{ts} \right)^2 \left(C_{B_s}^{\text{SM}}(\mu) + C_{B_s}^{\text{NP}}(\mu) \right) \left[\overline{b} \gamma^{\mu} (1 - \gamma_5) s \right]^2$$

where,

$$\begin{split} C_{B_s}^{\rm NP}(M_{Z'}) &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \frac{\left([V_{dL}]_{tb}[V_{dL}]_{ts}^*\right)^2}{\left([V_{\rm CKM}]_{tb}[V_{\rm CKM}^*]_{ts}\right)^2} \;, \\ &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \mathcal{R}_{\rm mix}^2 \;. \end{split}$$

- For symmetries with $X_S < 0$, $\theta_{23,dL}$ lies in the first quadrant.
- For symmetries with $X_S > 0$, $\theta_{23,dL}$ lies in the second quadrant.

- $C_{9\mu}$ sensitive to $X_S \cdot \mathcal{R}_{mix}$, while $B_s \overline{B_s}$ sensitive to $X_S^2 \cdot \mathcal{R}_{mix}^2$
- The effective Hamiltonian is given as:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F^2}{16\pi^2} M_W^2 \left([V_{\text{CKM}}]_{tb} [V_{\text{CKM}}^*]_{ts} \right)^2 \left(C_{B_s}^{\text{SM}}(\mu) + C_{B_s}^{\text{NP}}(\mu) \right) \left[\overline{b} \gamma^{\mu} (1 - \gamma_5) s \right]^2$$

where,

$$\begin{split} C_{B_s}^{\rm NP}(M_{Z'}) &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \frac{\left([V_{dL}]_{tb} [V_{dL}]_{ts}^*\right)^2}{\left([V_{\rm CKM}]_{tb} [V_{\rm CKM}^*]_{ts}\right)^2} \;, \\ &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \mathcal{R}_{\rm mix}^2 \;. \end{split}$$

- For symmetries with $X_S < 0$, $\theta_{23,dL}$ lies in the first quadrant.
- For symmetries with $X_S > 0$, $\theta_{23,dL}$ lies in the second quadrant.

- $C_{9\mu}$ sensitive to $X_S \cdot \mathcal{R}_{mix}$, while $B_s \overline{B_s}$ sensitive to $X_S^2 \cdot \mathcal{R}_{mix}^2$
- The effective Hamiltonian is given as:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = \frac{G_F^2}{16\pi^2} M_W^2 \left([V_{\text{CKM}}]_{tb} [V_{\text{CKM}}^*]_{ts} \right)^2 \left(C_{B_s}^{\text{SM}}(\mu) + C_{B_s}^{\text{NP}}(\mu) \right) \left[\overline{b} \gamma^{\mu} (1 - \gamma_5) s \right]^2$$

where,

$$\begin{split} C_{B_s}^{\rm NP}(M_{Z'}) &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \frac{\left([V_{dL}]_{tb} [V_{dL}]_{ts}^*\right)^2}{\left([V_{\rm CKM}]_{tb} [V_{\rm CKM}^*]_{ts}\right)^2} \;, \\ &= \frac{2\pi^2 \, X_S^2 \, g_{Z'}^2}{M_{Z'}^2 \, G_F^2 \, M_W^2} \cdot \mathcal{R}_{\rm mix}^2 \;. \end{split}$$

- For symmetries with $X_S < 0$, $\theta_{23,dL}$ lies in the first quadrant.
- For symmetries with $X_S > 0$, $\theta_{23,dL}$ lies in the second quadrant.

Case B: NMFV mixings continued ...

- As the flavor constraints depend on $X_S \mathcal{R}_{mix}$, they can be identical for the scenarios that have the same value of $|X_S|$ but opposite sign, with $\theta_{23,dL}$ values differing by 90°.
- Thinning of bands with large $sin(2\theta_{23,dL})$ indicates that overlap between global fits and neutral meson mixing is fading away.
- The symmetries belonging to categories A and AA, where new physics contributes only in the muon (and/or) tau sector, stay ruled out.
- Symmetries with all three generations of leptons charged survive the current constraints.
- Most of the scenarios are testable with the high luminosity of runs of the LHC.

- As the flavor constraints depend on $X_S \mathcal{R}_{mix}$, they can be identical for the scenarios that have the same value of $|X_S|$ but opposite sign, with $\theta_{23,dL}$ values differing by 90°.
- Thinning of bands with large $sin(2\theta_{23,dL})$ indicates that overlap between global fits and neutral meson mixing is fading away.
- The symmetries belonging to categories A and AA, where new physics contributes only in the muon (and/or) tau sector, stay ruled out.
- Symmetries with all three generations of leptons charged survive the current constraints.
- Most of the scenarios are testable with the high luminosity of runs of the LHC.

- As the flavor constraints depend on $X_S \mathcal{R}_{mix}$, they can be identical for the scenarios that have the same value of $|X_S|$ but opposite sign, with $\theta_{23,dL}$ values differing by 90°.
- Thinning of bands with large $sin(2\theta_{23,dL})$ indicates that overlap between global fits and neutral meson mixing is fading away.
- The symmetries belonging to categories A and AA, where new physics contributes only in the muon (and/or) tau sector, stay ruled out.
- Symmetries with all three generations of leptons charged survive the current constraints.
- Most of the scenarios are testable with the high luminosity of runs of the LHC.

A (1) > A (2) > A

- As the flavor constraints depend on $X_S \mathcal{R}_{mix}$, they can be identical for the scenarios that have the same value of $|X_S|$ but opposite sign, with $\theta_{23,dL}$ values differing by 90°.
- Thinning of bands with large $sin(2\theta_{23,dL})$ indicates that overlap between global fits and neutral meson mixing is fading away.
- The symmetries belonging to categories A and AA, where new physics contributes only in the muon (and/or) tau sector, stay ruled out.
- Symmetries with all three generations of leptons charged survive the current constraints.
- Most of the scenarios are testable with the high luminosity of runs of the LHC.

- As the flavor constraints depend on $X_S \mathcal{R}_{mix}$, they can be identical for the scenarios that have the same value of $|X_S|$ but opposite sign, with $\theta_{23,dL}$ values differing by 90°.
- Thinning of bands with large $sin(2\theta_{23,dL})$ indicates that overlap between global fits and neutral meson mixing is fading away.
- The symmetries belonging to categories A and AA, where new physics contributes only in the muon (and/or) tau sector, stay ruled out.
- Symmetries with all three generations of leptons charged survive the current constraints.
- Most of the scenarios are testable with the high luminosity of runs of the LHC.

CaseB: NMFV mixings continued ...

The idea of incompatibility of the neutral meson mixing with global fits for large $sin(2\theta_{23,dL})$ is shown.

• Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.

- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.

- Several $b \rightarrow s\ell\ell$ anomalies pointing towards lepton flavor universality violations.
- Z' solutions \Rightarrow potential explanations for these anomalies.
- The $U(1)_X$ symmetries are determined using principle of frugality and following bottom-up approach.
- The allowed solutions favour non-minimal mixings in the d-type left handed quark sector.
- + non-zero charges for all three generations of fermions.
- The symmetries could be well-tested at the future runs of the LHC.