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1.Why modular symmetry?
To predict quark and lepton mixings and masses with more 
sophisticated way due to a specific Yukawa structure!

+y3<ξ’>

Neutrino sector(Weinberg ope.)

Assumptions3L  ×  3L ×  3flavon →  1 

Example of traditional A4 model:

Tri-bi maximal form 1-3 mixing

1’
21

A4 model realizes non-vanishing θ13 .

○ ○

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

Add 1’ or 1’’ flavon which couples to neutrinos.

LL
LL
LL

Need additional flavons in A4 model
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So many bosons are introduced and  
vacuum alignments are assumed⋯ 

“Can we reduce the number of scalar?” 
=>If only the SM Higgs is okay,  

any vacuum alignments are not needed! 

3L  ×  1R (1R’, 1R”) ×  3flavon →  1 

Charged-lepton sector

Assumptions

Diagonal mass matrix of charged-leptons! 



Modular flavor symmetry can 
resolve this issue!!!

F.Feruglio:1706.08749;   J.C.Criado, F.Feruglio:1807.01125, 
T.Kobayashi,N.Omoto,Y.Shimizu, K.Takagi,M.T,T.H.Tatsuishi:1808.03012, 
H.O., M. Tanimoto: 1812.09677 ; T. Nomura, H. O.: 1904.03937, 
H.O., M. Tanimoto :1905.13421, F. J. de Anda, S. F. King and E. Perdomo:1812.05620, 
P. P. Novichkov, S. T. Petcov and M. Tanimoto:1812.11289, T. Nomura and H. O.:1906.03927, G. J. Ding, S. F. King and X. G. 
Liu:1907.11714, H. O. and Y. Orikasa:1907.13520, T. Nomura, H. O and O. Popov:1908.07457, T. Kobayashi, Y. Shimizu, K. 
Takagi, M. Tanimoto and T. H. Tatsuishi:1909.05139,T. Asaka, Y. Heo, T. H. Tatsuishi and T. Yoshida:1909.06520, G. J. 
Ding, S. F. King, X. G. Liu and J. N. Lu:1910.03460p-ph], D. Zhang:1910.07869(Texture); H.O. T. Nomura, S.~Patra:
1912.00379,T.~Kobayashi, T. Nomura and T. Shimomura: 1912.00637, X.~Wang:X.~Wang:2020.115105, S.J.D.King, 
S.F.King:2002.00969, M. Abbas:2002.01929, H.~O. and Y.~Shoji:2003.13219, H.~O and M.~Tanimoto:2005.00775, 
M.~K.~Behera, S.~Mishra, S.~Singirala and R.~Mohanta:2007.00545, M.~K.~Behera, S.~Singirala, S.~Mishra and 
R.~Mohanta:2009.01806, T.~Nomura and H.O.:2007.15459, T.~Asaka, Y.~Heo and T.~Yoshida:2009.12120, H.Okada, M. 
Tanimoto:2009.14242, K.I.~Nagao and H.O.:2010.03348, J.N. Lu, etc.1912.07573(Double covering of A4), H.O., M. 
Tanimoto :2012.01688, H.O. etc. (2012.11156), C.Y. Yao, etc:2012.13390, P. Chen, etc,(2101.12724), 
M. Abbas(Published in: Phys.Atom.Nucl. 83 (2020) 5, 764-769) ,… … 
(more than 50 papers since 2017) for A4 or A’4 
 

Recent papers on modular symmetries
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Dark Matter(DM)  
stability can be assured by  

making good use of the degrees of freedom in a modular 
symmetry 

“1.modular weight”  
and/or  

“2.residual symmetries at fixed points”; 

The other feature of modular symmetry

Additional symmetry (Z2) is not needed!
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Ex.1
Fermions Bosons

(L̄Le , L̄Lµ , L̄Lτ ) (eRe , eRµ , eRτ ) NR H η∗

SU(2)L 2 1 1 2 2

U(1)Y
1
2 −1 0 1

2 -12

A4 1, 1′, 1′′ 1, 1′′, 1′ 3 1 1

−k 0 0 −1 0 −3

TABLE I: Fermionic and bosonic field content of the model and their charge assignments under

SU(2)L × U(1)Y ×A4 in the lepton and boson sector, where −k is the number of modular weight

and the quark sector is the same as the SM.

Couplings

Y (6)
1 Y (2)

3 Y (4)
3

A4 1 3 3

−k 6 2 4

TABLE II: Modular weight assignments for Yukawas.

to the nature of modular form. Then numerical analysis for neutrino mass matrix is carried

out to show predictions of our model as a result of modular A4 symmetry.

Manuscript is organized as follows. In Sec. II, we give our model set up under A4 modular

symmetry. We discuss right-handed neutrino mass spectrum, lepton flavor violation (LFV)

and generation of the active neutrino mass at one-loop level in Sec. III. Numerial analysis

is presented in Sec. IV. Finally, we conclude and discuss in Sec. V.

II. MODEL

In this section we introduce our model, which is based on A4 modular symmetry. Lep-

tonic and scalar fields of the model and their representations under A4 symmetry and mod-

ular weights are given by Tab. I, while the ones of Yukawa couplings are given by Tab. II.

3

A modular A4 symmetic scotogenic model: 
T. Nomura, H.O., O. Popov, plb, 1908.07457

Dirac term is not allowed by modular weight  
=> Predictvie Ma model is realized!

Old mechanism

New mechanism

3

𝑌𝑟
𝑘 ത𝐿𝐻𝑁 k is even Modular wight of ത𝐿𝐻𝑁 is even

We can assign 𝑍2 parity: 
Fields with odd modular weight→ 𝑍2 odd
Fields with even modular weight→ 𝑍2 even

Some 𝑌𝑟
𝑘 are zero at fixed point

DM becomes stable at fixed points

Mechanism 1.
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Mechanism 2.

Old mechanism

New mechanism

3

𝑌𝑟
𝑘 ത𝐿𝐻𝑁 k is even Modular wight of ത𝐿𝐻𝑁 is even

We can assign 𝑍2 parity: 
Fields with odd modular weight→ 𝑍2 odd
Fields with even modular weight→ 𝑍2 even

Some 𝑌𝑟
𝑘 are zero at fixed point

DM becomes stable at fixed points
are zero at fixed points at τ=(i,ω,i∞)

DM can be stable at these points.

Dark matter stability at fixed points in a A modular A4 
symmetry: 

T. Kobayashi, H.O., Y. Orikasa, 2111.05674

We will see this in details !!
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  2.   Modular Group

       The superstring theory  
        on certain compactifications lead to  
        non-Abelian finite groups. 

=>Two dimensional torus compactification leads to Modular symmetry, 
which includes S3, A4, S4, A5 as its congruence subgroup.  

25

Two-dimensional torus T2  is obtained   
　　　as　　T2 = �2 / Λ 
Λ is two-dimensional lattice

The shape of torus is characterized by 

modulus τ, and different value of τ 
realizes the different shape of torus.
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27

α2

α1

(x,y)～(x,y)+n1α1+n2α2

Two-dimensional torus T2  is obtained as  
　　　　　T2 = �2 / Λ                                      
    
Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 
    α1=2πR    and  α2=2πRτ 

The same lattice is spanned by other bases under the transformation

ad-bc=1  
a,b,c,d are integer  SL(2,Z)

Modular transformation

τ =α2 /α1 is a modulus parameter (complex).

Torus can be described by a lattice on C-plane!

27

α2

α1

(x,y)～(x,y)+n1α1+n2α2

Two-dimensional torus T2  is obtained as  
　　　　　T2 = �2 / Λ                                      
    
Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 
    α1=2πR    and  α2=2πRτ 

The same lattice is spanned by other bases under the transformation

ad-bc=1  
a,b,c,d are integer  SL(2,Z)

Modular transformation

τ =α2 /α1 is a modulus parameter (complex).
The lattice is spanned by two vectors:
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27

α2

α1

(x,y)～(x,y)+n1α1+n2α2

Two-dimensional torus T2  is obtained as  
　　　　　T2 = �2 / Λ                                      
    
Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 
    α1=2πR    and  α2=2πRτ 

The same lattice is spanned by other bases under the transformation

ad-bc=1  
a,b,c,d are integer  SL(2,Z)

Modular transformation

τ =α2 /α1 is a modulus parameter (complex).

Identifying, 
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27

α2

α1

(x,y)～(x,y)+n1α1+n2α2

Two-dimensional torus T2  is obtained as  
　　　　　T2 = �2 / Λ                                      
    
Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 
    α1=2πR    and  α2=2πRτ 

The same lattice is spanned by other bases under the transformation

ad-bc=1  
a,b,c,d are integer  SL(2,Z)

Modular transformation

τ =α2 /α1 is a modulus parameter (complex).

Modular transformation

Then, τ is transformed as follows:

The modular transformation does not change  
the lattice(=shape of torus)!
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The modular transformation is generated by S and T .

α1

α2
α’2

TS
α’2

α2

α1 α’1

= =

translation

Lattice Form

t
Matrix Form
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generate infinite discrete group

Modular group
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If we impose T^N=1(congruence condition),

32

Modular group has interesting subgroups 

Infinite discrete group

Impose  TN=1   congruence condition

Γ(N) ≡  Γ / Γ(N)
ー

ー

Point1. 
Modular group has interesting finite subgroups !
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τ= i
It is invariant under S. Z2(1,S) symmetry is recovered! 

τ= ω

It is invariant under ST and (ST)(ST).

Z3(1,ST,(ST)(ST)) symmetry is recovered! 

τ= i∞

It is invariant under T, TT, TTT,…………T^N.

ZN(1,T,TT, …T^N) symmetry is recovered! 

#.N=3 is isomorphic to A4 group. 

Point2. 
The modular group has recovered symmetries 

at fixed points; τ= i, ω, i∞.



16

How to construct the Yukawa coupling of 
modular A4 group?

33

 Famous modular function : Dedekind eta-function

So called  Modular weight   1/2

Modular transformation of chiral superfields in MSSM

Modular weight Representation matrix

We can consider effective theories with Γ(N) symmetry.

In some cases, explicit form of function f（τ) have been obtained.

33

 Famous modular function : Dedekind eta-function

So called  Modular weight   1/2

Modular transformation of chiral superfields in MSSM

Modular weight Representation matrix

We can consider effective theories with Γ(N) symmetry.

In some cases, explicit form of function f（τ) have been obtained.

6

Generator 

Modular transformation

Holomorphic function transforms as 

Field transforms as 
When k=sum[kI,{i,1,n}], and ρ(γ)×ρ^(1)×…×ρ^(n)=singlet, 

then it is invariant under the modular A4 group. 
 

ρ(γ)

31

　Kinetic term is given by 

SL(2, Z)

which is also invariant under modular transformation

Another example

L1 is modular invariant.
Representation matrix of Γ

・　Superpotential should be invariant under modular 
transformation 
    in global SUSY model. 

vanishing total modular weight

i
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Mathematically, the minimum representation 
starts at triplet with modular weight of 2.

But, the way of construction is not unique and too technical.  
Thus, let me skip this process. 
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��

����A4 triplet of modular forms with weight 2 �

|q|�1�

F. Feruglio, arXiv:1706.08749�

Dedekind eta-function�

���

Let us consider Modular forms with higher weights k=4, 6 …�

Modular forms with higher weights are 
constructed by the  tensor product of 
modular forms of weight 2�

# of modular forms is k+1�

Weight 2  
3 Modular forms �

Weight 4 
5 Modular forms �

Weight 6 
7 Modular forms �

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292�

Concrete forms of 
Yukawa couplings 

of A4

���

Let us consider Modular forms with higher weights k=4, 6 …�

Modular forms with higher weights are 
constructed by the  tensor product of 
modular forms of weight 2�

# of modular forms is k+1�

Weight 2  
3 Modular forms �

Weight 4 
5 Modular forms �

Weight 6 
7 Modular forms �

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292�

●Yukawa couplings  
with higher orders 
 are constructed  

by multiplication rules 
 of A4 symmetry!

●Singlet Yukawa starts at 
k=4.  
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Let us consider Modular forms with higher weights k=4, 6 …�

Modular forms with higher weights are 
constructed by the  tensor product of 
modular forms of weight 2�

# of modular forms is k+1�

Weight 2  
3 Modular forms �

Weight 4 
5 Modular forms �

Weight 6 
7 Modular forms �

J.T.Penedo, S.T.Petcov, Nucl.Phys.B939(2019)292�

●Yukawa couplings  
with higher orders 
 are constructed  

by multiplication rules 
 of A4 symmetry!

●Singlet Yukawa starts at 
k=4.  

Result:
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Once this coupling is found, the other 
terms are automatically constructed by using  

multiplication rules of A4 group. 

40

νL νR

symmetric x 3Y anti-symmetric x 3Y

A multiplication rule of A4 group:

(a1,a2,a3) is replaced by (Y1(τ),Y2(τ),Y3(τ)).
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Eg.
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Weight 4 
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Weight 6 
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●Yukawa couplings  
with higher orders 
 are constructed  

by multiplication rules 
 of A4 symmetry!

●Singlet Yukawa starts at 
k=4.  

k=4:

k=6:

Dof for each of representation is given by k+1.

…
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Especially, we find representations at fixed 
points to find DM candidate: 

…Promising representations  to provide DM. 

k r ⌧ = i ⌧ = ! ⌧ = i1

2 3 (1, 1�
p
3,�2 +

p
3) (1,!,�1

2

!2) (1, 0, 0)

4 3 (1, 1, 1) (1,�1

2

!,!2) (1, 0, 0)

{1,10} {1, 1} {0, 1} {1, 0}

6 31 (1, 1�
p
3,�2 +

p
3) (0, 0, 0) (1, 0, 0)

32 (1, 1�
p
3, 1 +

p
3) (1,!,�1

2

!2) (0, 0, 0)

1 0 1 1

8 31 (1, 1, 1) (0, 0, 0) (1, 0, 0)

32 (1, 1, 1) (1,�1

2

!,!2) (0, 0, 0)

{1,10,100} {1, 1, 1} {0, 0, 1} {1, 0, 0}

10 31 (1, 1�
p
3,�2 +

p
3) (0, 0, 0) (1, 0, 0)

32 (1, 1�
p
3, 1 +

p
3) (0, 0, 0) (0, 0, 0)

33 (1, 1�
p
3,�2 +

p
3) (1,!,�1

2

!2) (0, 0, 0)

{1,10} {0, 0} {0, 1} {1, 0}

TABLE I: Modular forms of weight k = 2, k = 4, k = 6, k = 8 and k = 10 at fixed points of ⌧ ,

where we ignore overall factors.

Fermions Bosons

(LLe , LLµ , LL⌧ ) (eR, µR, ⌧R) (NR1 , NR2 , NR3) H

SU(2)L 2 1 1 2

U(1)Y
1

2

�1 0 1

2

A
4

(1, 100, 100) (1, 10, 10) (10, 1, 100) 1

�k �2 �4 �2 0

TABLE II: Field contents of fermions and bosons and their charge assignments in case of ⌧ = !

under SU(2)L ⇥ U(1)Y ⇥ A
4

in the lepton and boson sector, where �k is the number of modular

weight and the quark sector is the same as the SM.

4

Triplet rep. 
would be 
difficult  

to identify the 
DM candidate  
for A4 modular  

group.



We consider canonical seesaw, focussing on τ=i.

Dark matter stability at fixed points in a A modular A4 
symmetry: 

T. Kobayashi, H.O., Y. Orikasa, 2111.05674

38

0

DM candidate!

  3. A concrete model
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Fermions Bosons

(LLe , LLµ , LL⌧ ) (eR, µR, ⌧R) (NR1 , NR2 , NR3) H

SU(2)L 2 1 1 2

U(1)Y
1

2

�1 0 1

2

A
4

(1, 100, 10) (1, 10, 100) (1, 10, 100) 1

�k �4 �kR (�2,�4,�4) 0

TABLE III: Field contents of fermions and bosons and their charge assignments in case of ⌧ = i

under SU(2)L ⇥ U(1)Y ⇥ A
4

in the lepton and boson sector, where �k is the number of modular

weight and the quark sector is the same as the SM. �kR is allowed to be even numbers including

zero;0,�2,�4, · · · .

are vanishing at ⌧ = i, and the model spoils. In case of �kR = �4, there exist nine free

parameters, since there exist three types of non-vanishing singlets with modular weight 8;

Y
(8)

1,10,100 6= 0. If one assigns �kR = �6, the right-handed leptons have to be triplet under

the A
4

symmetry, since there exists one degree of freedom Y (10) only, while three types of

triplets for modular weight 10. These degrees of freedom would be useful to build a lepton

mass model. However since it is beyond our scope, we just select the simplest case, i.e.,

�kR = 0 hereafter. Under this symmetry, the renormalizable Lagrangian is given by

�L = a`Y
(4)

1

LLeHeR + b`Y
(4)

1

LLµHµR + c`Y
(4)

1

LL⌧H⌧R

+ a0`Y
(4)

1

0 LLeH⌧R + b0`Y
(4)

1

0 LLµHeR + c0`Y
(4)

1

0 LL⌧HµR

+ aDY
(6)

1

LLeH̃NR1 + bDY
(8)

1

LLµH̃NR2 + cDY
(8)

1

LL⌧ H̃NR3

+ a0DY
(8)

1

0 LL⌧ H̃NR2 + b0DY
(8)

1

0 LLeH̃NR3 + a00DY
(8)

1

00 LLµH̃NR3 + b00DY
(8)

1

00 LLeH̃NR2

+M
1

Y
(4)

1

NC
R1
NR1 +M

23

Y
(8)

1

NC
R2
NR3 +M

2

Y
(8)

1

0 NC
R2
NR2 +M

3

Y
(8)

1

00 NC
R3
NR3 + h.c.. (II.3)

When we focus on ⌧ = i; i.e., Y (6)

1

= 0, NR1 cannot decay into SM particles due to

absence of aDY
(6)

1

LLeH̃NR1 . Therefore, the Z
2

is restored at ⌧ = i, and NR1 is stable.

C. Relic density

The remaining task is to get a correct relic density to provide appropriate interactions

of DM. One of the simplest ways is to introduce a gauged U(1)B�L symmetry, under which

6

Renormalizable Yukawa Lagrangian

τ=i, aD term vanishes!

NR1 does not couple to any other fields, it is stable!
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How much can the Yukawa be deviated from τ=i???

DM is a quasi-stable particle that is longer 
than age of Universe~10^17 sec.

Total decay width

𝑌~ቊ𝑞 1′
𝑞2 1"

τ = i∞ case
𝑌3

𝑘 is too simple to realize fermion mass matrices 

DM is not stable long life-time
𝜏 ≠ i ∞ near the fixed point

𝑞 = 𝑒2𝜋 𝑖 𝜏/3 29

The age of universe → 1017 𝑠𝑒𝑐

𝑌 < 10−21 1′: 𝐼𝑚 τ > 21
1": 𝐼𝑚 τ > 11

|Y| should be less than 10^(-21) to satisfy the age of 
Universe!

Deviation would not be appropriate to include DM!
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How about the neutrino mass matrix at exact value 
at τ=i?

Dirac mass

𝑚𝐷 =
𝑣
2

0 𝑏𝐷" 𝑌1"
8 𝑏𝐷′ 𝑌1′

8

0 𝑏𝐷 𝑌1
8 𝑎𝐷" 𝑌1"

8

0 𝑎𝐷′ 𝑌1′
8 𝑐𝐷 𝑌1

8

Majorana mass

𝑀𝑁 =
1
2

𝑀1 𝑌1
4 0 0

0 𝑀2 𝑌1′
8 𝑀23 𝑌1

8

0 𝑀23 𝑌1
8 𝑀3 𝑌1"

8

Neutrino mass 
𝑚ν ≈ −𝑚𝐷𝑀𝑁

−1𝑚𝐷
𝑇

40

Mass eigen values :𝑚1 = 0,𝑚2 = ∆𝑚𝑠𝑜𝑙
2 ,𝑚3 = ∆𝑚𝑎𝑡𝑚

2 (NH)

𝑚1 = ∆𝑚𝑎𝑡𝑚
2 − ∆𝑚𝑠𝑜𝑙

2 ,𝑚2 = ∆𝑚𝑎𝑡𝑚
2 ,𝑚3 = 0 (IH)

Dirac mass

𝑚𝐷 =
𝑣
2

0 𝑏𝐷" 𝑌1"
8 𝑏𝐷′ 𝑌1′

8

0 𝑏𝐷 𝑌1
8 𝑎𝐷" 𝑌1"

8

0 𝑎𝐷′ 𝑌1′
8 𝑐𝐷 𝑌1

8

Majorana mass

𝑀𝑁 =
1
2

𝑀1 𝑌1
4 0 0

0 𝑀2 𝑌1′
8 𝑀23 𝑌1

8

0 𝑀23 𝑌1
8 𝑀3 𝑌1"

8

Neutrino mass 
𝑚ν ≈ −𝑚𝐷𝑀𝑁

−1𝑚𝐷
𝑇

40

Mass eigen values :𝑚1 = 0,𝑚2 = ∆𝑚𝑠𝑜𝑙
2 ,𝑚3 = ∆𝑚𝑎𝑡𝑚

2 (NH)

𝑚1 = ∆𝑚𝑎𝑡𝑚
2 − ∆𝑚𝑠𝑜𝑙

2 ,𝑚2 = ∆𝑚𝑎𝑡𝑚
2 ,𝑚3 = 0 (IH)

Rank 2 neutrino mass matrix!

Hierarchical mass order  for NH Degenerate mass order for IH 
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41

2
𝑣 𝑚𝐷:

0 0.0161 0.0148 − 0.589 𝑖
0 −0.324 0.00542 + 0.00912 𝑖
0 0.158 − 0.0659 𝑖 0.173

2
𝑀1

𝑀𝑁:
−0.00370 0 0

0 −0.00700 − 0.0962 𝑖 0.0808 − 0.137 𝑖
0 0.0808 − 0.137 𝑖 0.0224 + 0.00388 𝑖

2
𝑣 𝑚𝑒:

0.0586 0 0.00385 + 0.00943 𝑖
−0.00718 + 0.00193 𝑖 0.999 0

0 −0.00187 0.000253

𝑀1 = 2.4 1013𝐺𝑒𝑉

∆𝑚𝑎𝑡𝑚
2 = 2.47 10−3𝑒𝑉2

∆𝑚𝑠𝑜𝑙
2 = 7.94 10−5𝑒𝑉2

𝑠𝑖𝑛𝜃12 = 0.520
𝑠𝑖𝑛𝜃23 = 0.759
𝑠𝑖𝑛𝜃13 = 0.146
𝛿𝐶𝑃 = 211𝑜
𝛼21 = 128𝑜

NH

with in 3σ.
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IH

42

2
𝑣 𝑚𝐷:

0 −0.185 0.000992 − 0.0428 𝑖
0 −0.201 0.0278 + 0.00309 𝑖
0 −0.000833 −0.238

2
𝑀1

𝑀𝑁:
0.00390 0 0

0 0.0592 − 0.0695 𝑖 −0.0116 + 0.00427 𝑖
0 −0.0116 + 0.00427 𝑖 0.0134 − 0.0735 𝑖

2
𝑣 𝑚𝑒:

0.0594 0 −0.00258 + 0.000803 𝑖
−0.0242 + 0.00188 𝑖 0.999 0

0 0.0265 + 0.00177 𝑖 0.000259

𝑀1 = 4.3 1012𝐺𝑒𝑉

∆𝑚𝑎𝑡𝑚
2 = 2.43 10−3𝑒𝑉2

∆𝑚𝑠𝑜𝑙
2 = 7.84 10−5𝑒𝑉2

𝑠𝑖𝑛𝜃12 = 0.561
𝑠𝑖𝑛𝜃23 = 0.735
𝑠𝑖𝑛𝜃13 = 0.153
𝛿𝐶𝑃 = 284𝑜
𝛼21 = 352𝑜

42

2
𝑣 𝑚𝐷:

0 −0.185 0.000992 − 0.0428 𝑖
0 −0.201 0.0278 + 0.00309 𝑖
0 −0.000833 −0.238

2
𝑀1

𝑀𝑁:
0.00390 0 0

0 0.0592 − 0.0695 𝑖 −0.0116 + 0.00427 𝑖
0 −0.0116 + 0.00427 𝑖 0.0134 − 0.0735 𝑖

2
𝑣 𝑚𝑒:

0.0594 0 −0.00258 + 0.000803 𝑖
−0.0242 + 0.00188 𝑖 0.999 0

0 0.0265 + 0.00177 𝑖 0.000259

𝑀1 = 4.3 1012𝐺𝑒𝑉

∆𝑚𝑎𝑡𝑚
2 = 2.43 10−3𝑒𝑉2

∆𝑚𝑠𝑜𝑙
2 = 7.84 10−5𝑒𝑉2

𝑠𝑖𝑛𝜃12 = 0.561
𝑠𝑖𝑛𝜃23 = 0.735
𝑠𝑖𝑛𝜃13 = 0.153
𝛿𝐶𝑃 = 284𝑜
𝛼21 = 352𝑜

with in 3σ.
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43

𝑁1

𝑁1

h

h

𝜑

DMs annihilate to SM 
particles through the 
singlet scalar mediated 
process

How to explain the relic density of DM?

A simple way is to extend the gauged U(1) symmetry.

we introduce an isospin singlet ' with +2 B � L charge and zero modular weight in order

to break the spontaneous B � L symmetry. Therefore, ' has nonzero vacuum expectation

value that is denoted by ' ⌘ (v0 + r + iz0)/
p
2, where z0 is absorbed by Z 0 vector gauge

boson. Then, we have two promising channels via Z 0 and ' with s-channels. However since

the channels via Z 0 is severely restricted by LEP and LHC, it would not be so easy to get

sizable relic density of DM. In fact, sizable relic density; ⌦h2 ⇡ 0.12, is induced at s-channel

via r; NC
R1
NR1 ! r ! 2h, where NR’s are assigned to be �1 under U(1)B�L symmetry. 5

Then, only the Majorana terms are changed into as follows:

⌧ = ! :

yM2'Y
(4)

1

(!)NC
R2
NR2 + yM13'Y

(4)

1

(!)NC
R1
NR3 + yM1'Y

(4)

1

0 (!)NC
R1
NR1 + yM23'Y

(4)

1

0 (!)NC
R2
NR3 + h.c..

(II.4)

⌧ = i :

yM1'Y
(4)

1

(i)NC
R1
NR1 + yM23'Y

(8)

1

(i)NC
R2
NR3 + yM2'Y

(8)

1

0 (i)NC
R2
NR2 + yM3'Y

(8)

1

00 (i)NC
R3
NR3 + h.c...

(II.5)

The structure of lepton Yukawa sector does not change at all even after breaking the B�L

symmetry, and the DM candidate, which is denoted by XR ⌘ NR1 hereafter, does not mix

with the other two Majorana particles. Thus, the stability can never be broken.

Then, we write the valid Lagrangian to induce the cross section that can explain the

sizable relic density as follows:

Lint =� Yp
2
X̄PRXr + µhhrhhr, (II.6)

where Y corresponds to yM1Y
(4)

1

(!(i)) for ⌧ = !(i), and µhhr is trilinear terms on hhr

interaction. We assume to be mh . MX where MX is DM mass. The relic density of DM is

formulated by [98, 99]

⌦h2 ⇡ 1.07⇥ 109p
g⇤(xf )MP lJ(xf )[GeV]

, (II.7)

where g⇤(xf ⇡ 25) ⇡ 100 is the degrees of freedom for relativistic particles at freeze out

5 For simplicity, we neglect any mixings between r and the SM Higgs. This is favored by experiment at

LHC.

7

The difference  appears to only the Majorana 
mass terms; model does not spoil.
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temperature Tf = MX/xf , MP l ⇡ 1.22⇥ 1019 GeV, and

J(xf ) =

Z 1

xf

dx

2

4
R1
4M2

X
ds
p
s� 4M2

XW
h(s)K

1

⇣ p
s

MX
x
⌘

16M5

Xx[K2

(x)]2

3

5 , (II.8)

W h(s) =
1

32⇡

����
Y µhhr

s�m2

r +mr�r

����
2

(s� 2M2

X)

r
1� 4m2

h

s
. (II.9)

The decay width of r is given by

�r =
1

4⇡

"
µ2

hhr

mr

s

1� 4m2

h

m2

r

+
Y 2

8
mr

✓
1� 2

M2

X

m2

r

◆r
1� 4m2

h

s

#
. (II.10)

In Fig. 1, we show the relation between MX and ⌦h2, where blue line represents µhhr = 5

GeV, Y = 0.07, green one µhhr = 10 GeV, Y = 0.1, and red one µhhr = 50 GeV, Y = 0.3.

One finds that there is a solution at each of the resonant points.

Ωh2=0.12

FIG. 1: Relic density in terms of DM mass, where the black line represents the observed relic

density. Blue line represents µhhr = 5 GeV, Y = 0.07, green one µhhr = 10 GeV, Y = 0.1, and red

one µhhr = 50 GeV, Y = 0.3.

1. The exactness of fixed points

If ⌧ is slightly deviated from fixed points, XR has to decay into SM Higgs and neutrino.

Here, we simply estimate the decay rate via Yp
2

⌫̄PRXh, assuming the vanishing neutrino

mass and massive Higgs mass (to be mh ⇡ 125.5 GeV):

�X ' |Y |2mX

16⇡

✓
1� m2

h

m2

X

◆
2

. (II.11)

8

The solutions are found at nearby resonant points.
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    ●  We successfully constructed a model at τ=i 
that explains DM  as well as reproduce neutrino 
oscillation data within 3σ.                                                    

4.  Summary
●  Several modular forms with certain rep. become zero at fixed 
points, since a symmetry is recovered.

Next task is to provide predictions in the neutrino sector. 

S4 or the other modular groups(with doublet) would be 
promising… 

Many thanks!



Superstring theory 10D 
Our universe is      4D

 The extra 6D 
 should be compactified.

Torus compactification

Back up!



Once the Yukawa structure of triplet with 2 modular 
weight is obtained, any kinds of Yukawa structures are 
straightforwardly found via multiplication rules of A4.  

k=6

k=4

Singlets start from # of modular weight 4.

|q|≪1



 Famous modular function : Dedekind eta-function

So called  Modular weight   1/2

Modular transformation of fields:

Modular weight Representation matrix

We can consider effective theories with Γ(N) symmetry.

In some cases, explicit form of function f（τ) have been obtained.



Γ(3) 　    A4 group

Fundamental domain of  τ
Re

 There are 3 linearly independent 
 modular forms for 2k=2 (weight 2)

Dimension d2k(Γ(3))=2k+1

Take T3=1

Triplet !2k is weight 

Any singlets start from # of modular weight 4.General remarks:



T :  τ → τ+1

S : τ → -1/τ

   How to find A4 triplet modular functions.  
Prepare 4 Dedekind eta-functions as Modular functions    
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Modular function with weight 2 by using Dedekind eta-function

     In A4 group,  T3=1
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　　　　A4 triplet of modular function with weight 2 

|q|≪1

F. Feruglio, arXiv:1706.08749


