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Objective

e QCD decribes the strong interactions remarkably well, from the smallest distances probed so far to
hadronic scales where quarks and gluons confine to hadrons. Yet it faces a problem. The theory allows for
a CP-violating term Sy in the action. In Euclidean space-time it reads

S=Sacp+Si: Si=i0Q, Q=o— [daFLE, €2,

3272
where (Q is the toplogical charge, and 6 is an arbitrary phase with values —7 < 6 < 7. A nonvanishing
value of 8 would result in an electric dipole moment (EDM) d,, of the neutron. The current experimental
upper limit is |d,| < 1.8 x 10 'e fm, which suggests that 6 is anomalously small. This feature is
referred to as the strong CP problem, which is considered as one of the major unsolved problems in the
elementary particles field

e The prevailing paradigm is that QCD is in a single confinement phase for |@| < 7. The Peccei-Quinn
solution of the strong CP problem, for example, is realized by the shift symmetry e’ 9 5 046,
trading the theta term Sy for the hitherto undetected axion



e However, it is known from the case of the massive Schwinger model that a 6 term may change the phase
of the system. Callan, Dashen and Gross have claimed that a similar phenomenon will occur in QCD.
The statement is that the color fields produced by quarks and gluons will be screened by instantons for
|60] > 0. 't Hooft has argued that the relevant degrees of freedoom responsible for confinement are
color-magnetic monopoles. Confinement occurs when the monopoles condense in the vacuum, by analogy
to superconductivity. Due to the joint presence of gluons and monopoles a rich phase structure is expected

to emerge as a function of

For |6| > 0 quarks and gluons
I will be screened by forming bound
states with the monopoles

Kronfeld, G.S. and Wiese : Witten

® gluon X quark e monopole

e In this talk | will investigate the long-distance properties of the theory in the presence of the 6 term, Sy,
and show that CP is naturally conserved in the confining phase



Gradient Flow

QCD exhibits a striking change in behavior over different length scales. To reveal the macroscopic properties
of the theory, we are faced with a multi-scale problem, involving the passage from the short-distance
perturbative regime to the long-distance confining regime. Such multi-scale behavior can only be adddressed
by renormalization group (RG) techniques bridging the different regimes

A promising framework is provided by the gradient flow (GF), which evolves the gauge field along the gradient
of the action. The flow of SU(3) gauge fields is defined by the diffusion equation

J:B,(t,x) = D,G,.(t,x), G, =0,B,—0,B,+ [B,, B,

where D, is the covariant derivative and B, (t = 0,x) = A,(x) is the original gauge field of QCD. It
thus defines a sequence of gauge fields parameterized by ¢. The scale is set by u = 1/+/8t

The gradient flow

— provides a powerful tool for scale setting, with no need for costly ensemble matching, and defines a
universal scale

— is a particular, infinitesimal realization of the coarse-graining step of momentum space RG transformations

and, as such, keeps the long-distance physics unchanged _
Lischer, Suzuki et al.



The force laws underlying the physical system change with respect to the scale . Varying w, the couplings
and Green functions satisfy standard RG equations (although depending on the scheme S)

as(p)

The expectation value (E(t)) of the energy density
1 a a
E(t,x) = 1 G, (tz)G,, ()

has the perturbative expansion

() = 47:73752 s (k) [1 + ki agrs (1) + ko agps(p)” + - ] t=1/8

3
At?

agr(p)

which defines a renormalized coupling in the GF scheme, avgr (), with Agr = 1.873 Ay;5 (Ny = 0)

Lischer



For a start we may restrict our investigations to the Yang-Mills theory. If the strong CP problem is resolved
in the Yang-Mills theory, then it is expected to be resolved in QCD as well. We use the plaquette action to
generate representative ensembles of fundamental gauge fields on three different volumes

| 16" | 24* | 32¢
s=p3 (1 ——ReTl" U () ) # | 4000 | 5000 | 5000

x, u<v
B =6.0 a=0.082fm
Physical quantities are independent of the RG scale. Two examples: [ more to come]
e Topological susceptibility e R |
2 2 0.8 - xr ]
. <Q > - <Q> SR SRR PN RN SN SN VRN VRN VN VRN PR
Xt — v 06 | X £ £ T T T T T T T
e Renormalized Polyakov susceptibility 04 1 C s .. _ .
Y L B
2 2 ol f
PR (PD L g |
(| P[)? 7 Vs 0 20 40 60 80 100
X



U(z0)

Uu(zo + ae,)

U,(z + ae,)

U,(x) = exp{—iaA,(x + ae,/2)}

P(x) = %Tr [ [ Uo(o,x)

4

=83 %Tr F2 (z) + O(a®)

2

1 4 2
297 d x Z Tr b, (x)
[T

6

Q



Observables of the flowed field are automatically renormalized

Example: Light quark mass
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Confinement

The gradient flow running coupling (at p — 0)
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To make contact with phenomenology, it is desirable to transform the gradient flow coupling v to a common
scheme. A preferred scheme in the Yang-Mills theory is the V scheme ~ V(q) = —4nCrayv(1)/q’

BV(O‘V) ,u<<1:GeV —QOév(,u)

AA—f:eXp{_/oaGF 6GF<a)+/ 5v(a)} Ay

The linear growth of ay (w) with 1/u” is commonly dubbed
infrared slavery.  The static quark-antiquark potential can be

Vito Aye = 0.217(7
described by the exchange of a single dressed gluon 0 MS (7)

Vi) = — 1 73 -4 av(q) Literature:
YT T an) ae™ 3 2140 r>1/ay
q v Vo Avrs = 0.220(3)

2 .
where o = gA%/, giving the string tension v/o = 445(19) MeV arXiv:1905.05147



It is interesting to compare the nonperturbative gradient flow beta function with the perturbative beta function
known up to twenty loops
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As was to be expected, the perturbative beta function gradually approaches the nonperturbative beta function
with increasing order



Phase Structure

With increasing flow time the initial gauge field ensemble splits into effectively disconnected topological sectors
of charge (Q, at ever smaller flow time as (3 is increased
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a2 ensemble average vanishes like 1/t

Observables consistently show a clear dependence on Q. This is the reason for a nontrivial 6 dependence
when Fourier transformed to the 8 vacuum



Running coupling acys

If the general expectation is correct and the color fields are screened for |@| > 0, we should, in the first
place, find that the running coupling constant is screened in the infrared

From (E(Q,t)) we obtain ay (Q, ) in the individual topological sectors |Q| from bottom to top
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Interestingly, vy (Q, p) vanishes in the infrared for Q@ = 0, while the ensemble average ay () is

represented by |Q| ~ 1/2(Q?)/x




The transformation of ay (Q, ) from @ to the @ vacuum is achieved by the discrete Fourier transform
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The color charge is totally screened for |6] = 0 in the infrared, while it Behavior for || > O similar
becomes gradually independent of 6 as we approach the perturbative regime to as(T, ) at T > T,



It is tempting to derive RG flow equations for the running coupling constant cvy (8, p), by analogy with the

quantum Hall conductivity

T/ay

10—

Quantum Hall effect (model)
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Polyakov loop

The Polyakov loop P describes the propagation of a single static quark travelling around the periodic lattice
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From @ = 0 (top) to 6 (bottom)

(P) = 0 in each sector. That implies center symmetry throughout. P rapidly populates the entire
theoretically allowed region for small values of |@Q|, while it stays small for larger values of | Q|



The transformation of the Polyakov loop expectation values to the € vacuum is again achieved by the discrete
Fourier transform
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The Polyakov loop gets totally screened for |#| = 0. The renormalized Polyakov loop susceptibility is
independent of flow time ¢ (even for 8 # 0!)




Mass gap
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Kurtosis

The key to understanding the transition to nonvanishing @ lies in the topological structure of the vacuum.

Our global analysis limits us to the investigation of moments of topological charge (). A quantity of particular
interest is the kurtosis K. In the 6 vacuum
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Errors

Source of errors
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e Convergence of the (discrete) Fourier series > 5 exp{i0Q} P(Q) - - -

e Statistics

e Topological charge generally limited to |Q| < |Q|max, |Q|max <X V'V

——————
discrete fourier

fit

Z(0),ay(0),xp(0),- - are positive functions of 8

After the quantities | showed have dropped to ‘zero’
at |8 = 0, they start to oscillate around zero with
frequency v & |Q|max due to the truncated Fourier
series

Various techniques to filter unphysical high-frequency
modes are discussed in the literature. We fit the tail
of the distributions to a smooth function. Alternatively,
one can employ a low-pass filter, which practically gives
the same result



EDM & Axion

EDM

We expect the electric dipole moment of the neutron to be largest for heavy quarks, as it will vanish trivially
in the chiral limit, d,, o< mymg/ (M + Mmg)

At the SU(3) flavor symmetric point, m, = mx = 410 MeV arXiv:1102.5200
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arXiv:1701.07792, 2011.01084, 2101.07230



Axion

In the Peccei—Quinn theory the CP violating action Sy = 160 is augmented by the axion interaction

S0 S0+ Saam = [[@'e [5@u0u@)" +i (6-252) )| . [d'ea@) =@

with
Upg(1): €951y —  |0+6)

It is then expected that QCD induces an effective potential Ueg (0 — ¢4/ fa), having a stationary point at
0 — ¢o/ fo = 0, which prompts the field redefinition ¢, — pq + fo 0:

x
, ba()
Ja
CP violating CP conserving
thus effectively eliminating CP violation in the strong interaction However, QCD vacuum

unstable under Upq(1)




Conclusions

% The gradient flow proved a powerful tool for tracing the gauge field over successive length scales and
showed its potential for extracting low-energy quantities. A key point is that the path integral splits into
disconnected topological sectors for ¢ = 0, which is expected to occur at ever smaller flow times with
decreasing lattice spacing. Comparing results on different volumes enabled us to control the accuracy of the
calculation

% The novel result is that color charges are screened for |@| > 0 by nonperturbative effects, limiting the
vacuum angle to & = 0 at macroscopic distances, which rules out any strong CP violation at the hadronic level

% Screening is a gradual process, most likely a crossover, which is completed once the vacuum has attained
a sufficient level of color-electric charge density, which seems to be the case for |6 = 0.5. This result does
not come as a surprise. One simply did not have the tools to address the problem

% The electric dipole moment of the neutron was found to be zero within the errorbars, as expected. In
absence of a nonvanishing dipole moment no upper limit of @ can be drawn from the experimental bound

% The nontrivial phase structure of QCD has far-reaching consequences for anomalous chiral transformations.
In particular, the confining QCD vacuum will be unstable under the Peccei-Quinn chiral Upg(1l) = 1005
transformation, realizing the shift symmetry & — 6 + &, which thwarts the axion conjecture



