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Have we discovered all particles which get most of their mass
from the Higgs (“Loryons”)?

Why do we care?

Effective field theory analysis of Standard Model
1 SMEFT, written in terms of Higgs doublet H, linearly realizes

SU(2)L × U(1)Y .
2 Loryons require HEFT, written in terms of physical Higgs h,

which linearly realizes U(1)em [Alonso, Jenkins, and Manohar
’16; Falkowski and Rattazzi ’19; TC, NC, XL, DS ’20].

Strongly first-order electroweak phase transition [IB ’22]

Unitarity constraints imply finite search space

Good discovery prospects in the near future
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Roadmap:

Assumptions and how they could be relaxed

Set up notation

Sharp criteria for necessity of HEFT

Upper bound on mass from unitarity

Experimental constraints considered

Future directions
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We restrict the BSM Loryons as following:

Scalars and vector-like fermions

No new custodial symmetry violation to one-loop level

Z2 symmetry on BSM Loryons, often weakly broken to allow
decay

All new charged particles promptly decay
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For a scalar Φ in the custodial representation [L,R]Y , we have

L ⊃− m2
ex

2ρ
tr
(

Φ†Φ
)

− λhΦ

2ρ
tr
(

Φ†Φ
)1

2
tr
(
H†H

)
−
λ′hΦ

2ρ
tr
(

Φ†T a
LΦT ȧ

R

)1

2
tr
(
H†T a

2HT
ȧ
2

)

m2
V = m2

ex +
1

2
λhΦv

2 +
1

2
λ′hΦv

2 (C2(L) + C2(R)− C2(V ))

= m2
ex +

1

2
λV v

2,

V ∈ V = {L + R − 1, L + R − 3, |L− R|+ 1}
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For a pair of vector-like fermions Ψ1,Ψ2 in the custodial
representations [L1,R1]Y , [L2,R2]Y = [L1 ± 1,R1 ± 1]Y , we have

L ⊃ −Mex1 tr
(
Ψ̄1Ψ1

)
−Mex2 tr

(
Ψ̄2Ψ2

)
− y12Ψ̄1 · H · Ψ2 + h.c.

We will set Mex1 = Mex2 = Mex.

MV = Mex, V ∈ V1 ∪ V2 − V1 ∩ V2

M±V = Mex ±
v√
2
|yV |, V ∈ V1 ∩ V2
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Integrating out a scalar Φ to all orders in H and two-derivative
order gives [TC, NC, XL, DS ’20]

Leff ⊃
1

2ρ(4π)2

∑
V∈V

V

{
m4

V (H)

2

[
ln

µ2

m2
V (H)

+
3

2

]

+
λ2
V

6m2
V (H)

[
∂|H|2

]2
2

+O
(
∂4
)}
,

m2
V (H) = m2

ex + λV |H|2

Expansion in λV |H|2/m2
ex (SMEFT) converges at |H| = v/

√
2 iff

1

2
λV v

2 < m2
ex ∀V ∈ V
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Define

fV ≡
λV v

2/2

m2
V

Criterion for HEFT being necessary is

max
V∈V

fV ≡ fmax ≥
1

2

For fermions,

fmax ≡ max
V∈V1∩V2

|yV |v/
√

2

M+V
≥ 1

2
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Unitarity of S = 1 + iT implies

S†S = 1 =⇒ i(T † − T ) = T †T

Can perform partial wave decomposition, translating above bound
into constraint on partial wave coefficients,

|Re(aj)| ≤
1

2
.

a0

(√
s
)

=

√
4 |~pi | |~pf |
2δi+δf s

1

32π

∫ 1

−1
d(cos θ) M(i → f )

Can be considered not just in the high energy limit, but at all
√
s

[Goodsell, Staub ’18]:
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Strongest bound comes close to threshold, where the amplitude is
dominated by t-channel exchange of a Higgs:
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We consider constraints from:

Higgs couplings (hγγ, hgg , Higgs decay) [ATLAS,
arXiv:1909.02845; CMS, arXiv:1809.10733]

Precision electroweak measurements (primarily the S
parameter) [PDG, ’18]

Direct searches [various sources]
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First noted by [Bizot, Frigerio ’15]
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What can further close the parameter space (or lead to a
discovery!)?

Higgs wavefunction renormalization

New / improved direct searches (possibilities listed in paper)

Improved Higgs coupling measurements

Particularly hZγ and hhh
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Integrating out a particle acquiring most of its mass from the
Higgs (a “Loryon”) requires the use of HEFT.

There are sizable viable regions of the Loryon parameter space.

Improved measurements of Higgs properties would
substantially narrow the allowed parameter space.

Loryons’ large coupling to the Higgs means that they are
natural candidates for generating a strongly first-order
electroweak phase transition.
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