Conveners
Afternoon Session
- Dibyendu Nanda (Indian Association for the Cultivation of Science)
- Jaehoon Jeong (KIAS)
Afternoon Session
- Tomasz Dutka (Korea Institute for Advanced Study)
- Thomas Flacke (KIAS)
We propose a leptogenesis scenario where the CP asymmetry is provided by the kinetic motion of the majoron in the decay and inverse decay of a right-handed neutrino which violates the lepton number by one unit. We find that successful leptogenesis can be achieved for sub-keV majoron which can be a viable dark matter candidate as well. If one considers a very strong wash-out regime requiring a...
Without tuning of parameters, the typical mass scale of the lightest right-handed neutrino (RHN), in the thermal leptogenesis paradigm, is about 10^{11} GeV. As opposed to the mild departure from equilibrium offered by the slow expansion, a first-order phase transition (FOPT) offers a drastic scenario of out-of-equilibrium dynamics. In this work we explore the possibility of embedding thermal...
We investigate the pseudo-Nambu-Goldstone bosons (pNGBs) potential in the geometrical point of view. In this talk I will discuss how to essentially organise or structurally understand the pNGB potential without recourse to the UV symmetries.
Ultralight bosonic fields (ULBFs) are predicted by various theories beyond the standard model of particle physics and are viable candidates of cold dark matter. There have been increasing interests to search for the ULBFs in physical and astronomical experiments. In this paper, we investigate the sensitivity of several planned space-based gravitational-wave interferometers to ultralight scalar...
Dark Matter candidates with cross sections as tiny as can be captured efficiently in compact stars, like Neutron Stars and White Dwarfs. The collisions to capture Dark Matter would heat the star, raising its equilibrium temperature, around 2000K for a NS. Thus, observation of old and cold NS that should have reached equilibrium can be used to set constraints on the capture cross section. In...
Celestial bodies are well motivated laboratories for dark matter searches. I will give two such examples. In the first scenario, dark matter gets captured in the Earth by scattering with Earth nuclei. The accumulated dark matter annihilates and yields excessive heat. In the other scenario, dark photons resonantly convert to photons in the atmosphere of neutron stars or white dwarfs, producing...
We introduce the gauged quintessence model, in which the dark energy field (quintessence) has a U(1) gauge symmetry. We identify the real part of the complex scalar as the dark energy field (quintessence), while the imaginary part is the longitudinal component of a new gauge boson. It brings interesting characters to dark energy physics. The U(1) gauge boson can affect the quintessence...
In this work, we explore the intriguing possibility of connecting self-interacting dark matter (SIDM) with the recently observed exceptionally bright and long-duration Gamma Ray Burst (GRB221009A). The proposed minimal scenario involves a light scalar mediator, simultaneously enabling dark matter (DM) self-interaction and explaining the observed very high energy (VHE) photons from GRB221009A...
We investigate a minimal renormalizable model that incorporates a light fermionic weakly interacting massive particle (WIMP) dark matter (DM) and a mediator for interactions with standard model particles. Our comprehensive likelihood analysis considers constraints from direct detection experiments, collider searches, cosmological observations, and astrophysical observations. In particular, we...